skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Topological chiral crystals with helicoid-arc quantum states

Abstract

The quantum behaviour of electrons in materials is the foundation of modern electronics and information technology, and quantum materials with topological electronic and optical properties are essential for realizing quantized electronic responses that can be used for next generation technology. Here we report the first observation of topological quantum properties of chiral crystals in the RhSi family. We find that this material class hosts a quantum phase of matter that exhibits nearly ideal topological surface properties originating from the crystals’ structural chirality. Electrons on the surface of these crystals show a highly unusual helicoid fermionic structure that spirals around two high-symmetry momenta, indicating electronic topological chirality. The existence of bulk multiply degenerate band fermions is guaranteed by the crystal symmetries; however, to determine the topological invariant or charge in these chiral crystals, it is essential to identify and study the helicoid topology of the arc states. The helicoid arcs that we observe on the surface characterize the topological charges of ±2, which arise from bulk higher-spin chiral fermions. These topological conductors exhibit giant Fermi arcs of maximum length (π), which are orders of magnitude larger than those found in known chiral Weyl fermion semimetals. Here, our results demonstrate an electronicmore » topological state of matter on structurally chiral crystals featuring helicoid-arc quantum states. Such exotic multifold chiral fermion semimetal states could be used to detect a quantized photogalvanic optical response, the chiral magnetic effect and other optoelectronic phenomena predicted for this class of materials.« less

Authors:
 [1];  [1];  [1];  [2];  [1];  [1];  [3];  [4];  [4];  [5];  [6];  [1];  [1];  [1];  [2];  [2];  [7];  [4];  [1];  [8] more »;  [5];  [9] « less
  1. Princeton Univ., NJ (United States). Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7)
  2. Peking Univ., Beijing (China). International Center for Quantum Materials
  3. Louisiana State Univ., Baton Rouge, LA (United States)
  4. Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)
  5. Academia Sinica, Taipei (Taiwan). Institute of Physics
  6. Princeton Univ., NJ (United States). Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7); Rigetti Quantum Computing, Berkeley, CA (United States)
  7. National Cheng Kung University, Tainan (Taiwan)
  8. Peking Univ., Beijing (China). International Center for Quantum Materials; Collaborative Innovation Center of Quantum Matter, Beijing (China); University of the Chinese Academy of Science, Beijing (China). CAS Center for Excellence in Topological Quantum Computation
  9. Princeton Univ., NJ (United States). Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Natural Science Foundation of China (NNSFC); National Key R&D Program of China; Chinese Academy of Science; Academia Sinica, Taiwan; Ministry of Science and Technology (MOST) in Taiwan; National Cheng Kung University, Taiwan; National Center for Theoretical Sciences (NCTS), Taiwan
OSTI Identifier:
1632127
Grant/Contract Number:  
AC02-05CH11231; FG02-05ER46200; XDPB08-1; 291472
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Volume: 567; Journal Issue: 7749; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Sanchez, Daniel S., Belopolski, Ilya, Cochran, Tyler A., Xu, Xitong, Yin, Jia-Xin, Chang, Guoqing, Xie, Weiwei, Manna, Kaustuv, Süß, Vicky, Huang, Cheng-Yi, Alidoust, Nasser, Multer, Daniel, Zhang, Songtian S., Shumiya, Nana, Wang, Xirui, Wang, Guang-Qiang, Chang, Tay-Rong, Felser, Claudia, Xu, Su-Yang, Jia, Shuang, Lin, Hsin, and Hasan, M. Zahid. Topological chiral crystals with helicoid-arc quantum states. United States: N. p., 2019. Web. doi:10.1038/s41586-019-1037-2.
Sanchez, Daniel S., Belopolski, Ilya, Cochran, Tyler A., Xu, Xitong, Yin, Jia-Xin, Chang, Guoqing, Xie, Weiwei, Manna, Kaustuv, Süß, Vicky, Huang, Cheng-Yi, Alidoust, Nasser, Multer, Daniel, Zhang, Songtian S., Shumiya, Nana, Wang, Xirui, Wang, Guang-Qiang, Chang, Tay-Rong, Felser, Claudia, Xu, Su-Yang, Jia, Shuang, Lin, Hsin, & Hasan, M. Zahid. Topological chiral crystals with helicoid-arc quantum states. United States. doi:10.1038/s41586-019-1037-2.
Sanchez, Daniel S., Belopolski, Ilya, Cochran, Tyler A., Xu, Xitong, Yin, Jia-Xin, Chang, Guoqing, Xie, Weiwei, Manna, Kaustuv, Süß, Vicky, Huang, Cheng-Yi, Alidoust, Nasser, Multer, Daniel, Zhang, Songtian S., Shumiya, Nana, Wang, Xirui, Wang, Guang-Qiang, Chang, Tay-Rong, Felser, Claudia, Xu, Su-Yang, Jia, Shuang, Lin, Hsin, and Hasan, M. Zahid. Wed . "Topological chiral crystals with helicoid-arc quantum states". United States. doi:10.1038/s41586-019-1037-2. https://www.osti.gov/servlets/purl/1632127.
@article{osti_1632127,
title = {Topological chiral crystals with helicoid-arc quantum states},
author = {Sanchez, Daniel S. and Belopolski, Ilya and Cochran, Tyler A. and Xu, Xitong and Yin, Jia-Xin and Chang, Guoqing and Xie, Weiwei and Manna, Kaustuv and Süß, Vicky and Huang, Cheng-Yi and Alidoust, Nasser and Multer, Daniel and Zhang, Songtian S. and Shumiya, Nana and Wang, Xirui and Wang, Guang-Qiang and Chang, Tay-Rong and Felser, Claudia and Xu, Su-Yang and Jia, Shuang and Lin, Hsin and Hasan, M. Zahid},
abstractNote = {The quantum behaviour of electrons in materials is the foundation of modern electronics and information technology, and quantum materials with topological electronic and optical properties are essential for realizing quantized electronic responses that can be used for next generation technology. Here we report the first observation of topological quantum properties of chiral crystals in the RhSi family. We find that this material class hosts a quantum phase of matter that exhibits nearly ideal topological surface properties originating from the crystals’ structural chirality. Electrons on the surface of these crystals show a highly unusual helicoid fermionic structure that spirals around two high-symmetry momenta, indicating electronic topological chirality. The existence of bulk multiply degenerate band fermions is guaranteed by the crystal symmetries; however, to determine the topological invariant or charge in these chiral crystals, it is essential to identify and study the helicoid topology of the arc states. The helicoid arcs that we observe on the surface characterize the topological charges of ±2, which arise from bulk higher-spin chiral fermions. These topological conductors exhibit giant Fermi arcs of maximum length (π), which are orders of magnitude larger than those found in known chiral Weyl fermion semimetals. Here, our results demonstrate an electronic topological state of matter on structurally chiral crystals featuring helicoid-arc quantum states. Such exotic multifold chiral fermion semimetal states could be used to detect a quantized photogalvanic optical response, the chiral magnetic effect and other optoelectronic phenomena predicted for this class of materials.},
doi = {10.1038/s41586-019-1037-2},
journal = {Nature (London)},
issn = {0028-0836},
number = 7749,
volume = 567,
place = {United States},
year = {2019},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 51 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Criteria for Directly Detecting Topological Fermi Arcs in Weyl Semimetals
journal, February 2016


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Filling constraints for spin-orbit coupled insulators in symmorphic and nonsymmorphic crystals
journal, November 2015

  • Watanabe, Haruki; Po, Hoi Chun; Vishwanath, Ashvin
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 47
  • DOI: 10.1073/pnas.1514665112

Topological insulators and superconductors
journal, October 2011


Weyl semimetals, Fermi arcs and chiral anomalies
journal, October 2016

  • Jia, Shuang; Xu, Su-Yang; Hasan, M. Zahid
  • Nature Materials, Vol. 15, Issue 11
  • DOI: 10.1038/nmat4787

Ultraquantum magnetoresistance in the Kramers-Weyl semimetal candidate β Ag 2 Se
journal, October 2017


Weyl Metals
journal, March 2018


Topological Materials: Weyl Semimetals
journal, March 2017


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Weyl semimetal with broken time reversal and inversion symmetries
journal, April 2012


Existence of bulk chiral fermions and crystal symmetry
journal, April 2012


Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2
journal, September 2016

  • Deng, Ke; Wan, Guoliang; Deng, Peng
  • Nature Physics, Vol. 12, Issue 12
  • DOI: 10.1038/nphys3871

Chern Semimetal and the Quantized Anomalous Hall Effect in HgCr 2 Se 4
journal, October 2011


Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal
journal, February 2016

  • Zhang, Cheng-Long; Xu, Su-Yang; Belopolski, Ilya
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10735

Dirac Fermions in Solids: From High-T c Cuprates and Graphene to Topological Insulators and Weyl Semimetals
journal, March 2014


Chirality meets topology
journal, October 2018


The strange topology that is reshaping physics
journal, July 2017


Unconventional Chiral Fermions and Large Topological Fermi Arcs in RhSi
journal, November 2017


Discovery of Weyl Fermion Semimetals and Topological Fermi Arc States
journal, March 2017


Multiple Types of Topological Fermions in Transition Metal Silicides
journal, November 2017


Topological semimetals with helicoid surface states
journal, June 2016

  • Fang, Chen; Lu, Ling; Liu, Junwei
  • Nature Physics, Vol. 12, Issue 10
  • DOI: 10.1038/nphys3782

Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks
journal, September 2015


Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet
journal, September 2018


Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2
journal, July 2016

  • Huang, Lunan; McCormick, Timothy M.; Ochi, Masayuki
  • Nature Materials, Vol. 15, Issue 11
  • DOI: 10.1038/nmat4685

Topological quantum properties of chiral crystals
journal, October 2018


Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate Mo x W 1 x Te 2
journal, August 2016


Type-II Weyl semimetals
journal, November 2015

  • Soluyanov, Alexey A.; Gresch, Dominik; Wang, Zhijun
  • Nature, Vol. 527, Issue 7579
  • DOI: 10.1038/nature15768

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Colloquium: Topological insulators
journal, November 2010


Elektron und Gravitation. I
journal, May 1929


The physics of quantum materials
journal, October 2017


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Weyl Semimetal in a Topological Insulator Multilayer
journal, September 2011


Discovery of a Weyl fermion semimetal and topological Fermi arcs
journal, July 2015


The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal
journal, November 1983


Quantized circular photogalvanic effect in Weyl semimetals
journal, July 2017

  • de Juan, Fernando; Grushin, Adolfo G.; Morimoto, Takahiro
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15995

Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2
journal, September 2016


Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals
journal, July 2016


Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates
journal, May 2011


Spin-orbit semimetals in the layer groups
journal, October 2016


A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class
journal, June 2015

  • Huang, Shin-Ming; Xu, Su-Yang; Belopolski, Ilya
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8373

    Works referencing / citing this record:

    Optical response of the chiral topological semimetal RhSi
    journal, October 2019


    Strong and fragile topological Dirac semimetals with higher-order Fermi arcs
    journal, January 2020


    Topological triply degenerate point with double Fermi arcs
    journal, April 2019


    Magnetic skyrmions in nanostructures of non-centrosymmetric materials
    journal, December 2019

    • Mathur, Nitish; Stolt, Matthew J.; Jin, Song
    • APL Materials, Vol. 7, Issue 12
    • DOI: 10.1063/1.5130423

    Higher-Order Topology, Monopole Nodal Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides X Te 2 ( X = Mo , W )
    journal, October 2019


    Electronic Structure of B20 (FeSi-Type) Transition-Metal Monosilicides
    journal, August 2019

    • Pshenay-Severin, Dmitry A.; Burkov, Alexander T.
    • Materials, Vol. 12, Issue 17
    • DOI: 10.3390/ma12172710

    Chiral fermion reversal in chiral crystals
    journal, December 2019


    Chiral topological semimetal with multifold band crossings and long Fermi arcs
    journal, May 2019


    Thermoelectric and galvanomagnetic properties of topologically non-trivial (Co-M)Si semimetals (M = Fe, Ni) at high temperatures
    journal, December 2019

    • Antonov, A.; Ivanov, Yu.; Konstantinov, P.
    • Journal of Applied Physics, Vol. 126, Issue 24
    • DOI: 10.1063/1.5119209

    Chiral Magnetism and High-Temperature Skyrmions in B20-Ordered Co-Si
    journal, February 2020


    Photoinduced interfacial chiral modes in threefold topological semimetal
    journal, October 2019


    Difference frequency generation in topological semimetals
    journal, January 2020


    Observation of a topological nodal surface and its surface-state arcs in an artificial acoustic crystal
    journal, November 2019


    Observation of multiple types of topological fermions in PdBiSe
    journal, June 2019


    Quantum oscillations and electronic structure in the large–Chern number semimetal RhSn
    journal, December 2019


    Photoemission Spectroscopic Evidence for the Dirac Nodal Line in the Monoclinic Semimetal SrAs 3
    journal, February 2020


    Growth and Strain Engineering of Trigonal Te for Topological Quantum Phases in Non-Symmorphic Chiral Crystals
    journal, September 2019

    • Basnet, Rabindra; Doha, M.; Hironaka, Takayuki
    • Crystals, Vol. 9, Issue 10
    • DOI: 10.3390/cryst9100486

    Signatures of a Charge Density Wave Phase and the Chiral Anomaly in the Fermionic Material Cobalt Monosilicide CoSi
    journal, November 2019

    • Schnatmann, Lauritz; Geishendorf, Kevin; Lammel, Michaela
    • Advanced Electronic Materials, Vol. 6, Issue 2
    • DOI: 10.1002/aelm.201900857

    Absolute Structure from Scanning Electron Microscopy
    journal, March 2020


    Linear optical conductivity of chiral multifold fermions
    journal, April 2019

    • Sánchez-Martínez, Miguel-Ángel; de Juan, Fernando; Grushin, Adolfo G.
    • Physical Review B, Vol. 99, Issue 15
    • DOI: 10.1103/physrevb.99.155145

    Angle-resolved photoemission spectroscopy and its application to topological materials
    journal, August 2019


    Signatures of Sixfold Degenerate Exotic Fermions in a Superconducting Metal PdSb 2
    journal, February 2020


    Quasiparticle interference evidence of the topological Fermi arc states in chiral fermionic semimetal CoSi
    journal, December 2019