skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides

Abstract

The phase-matching condition is a key aspect in nonlinear wavelength conversion processes, which requires the momenta of the photons involved in the processes to be conserved. Conventionally, nonlinear phase matching is achieved using either birefringent or periodically poled nonlinear crystals, which requires careful dispersion engineering and is usually narrowband. In recent years, metasurfaces consisting of densely packed arrays of optical antennas have been demonstrated to provide an effective optical momentum to bend light in arbitrary ways. Here, we demonstrate that gradient metasurface structures consisting of phased array antennas are able to circumvent the phase-matching requirement in on-chip nonlinear wavelength conversion. We experimentally demonstrate phase-matching-free second harmonic generation over many coherent lengths in thin film lithium niobate waveguides patterned with the gradient metasurfaces. Efficient second harmonic generation in the metasurface-based devices is observed over a wide range of pump wavelengths (λ = 1580–1650 nm).

Authors:
 [1];  [2];  [3];  [4];  [5];  [5];  [2];  [1]
  1. John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
  2. Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
  3. Department of Physics, The University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
  4. John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Key Laboratory of Quantum Information & Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
  5. Key Laboratory of Quantum Information & Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); US Air Force Office of Scientific Research (AFOSR); Defense Advanced Research Projects Agency Young Faculty Award; National Natural Science Foundation of China (NNSFC); Open Fund of the State Key Laboratory on Integrated Optoelectronics
OSTI Identifier:
1624063
Grant/Contract Number:  
SC0012704; ECCS-1609549; ECCS-1307948; FA9550-14-1-0389; D15AP00111; 61590932; IOSKL2015KF12
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; Science & Technology - Other Topics

Citation Formats

Wang, Cheng, Li, Zhaoyi, Kim, Myoung-Hwan, Xiong, Xiao, Ren, Xi-Feng, Guo, Guang-Can, Yu, Nanfang, and Lončar, Marko. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. United States: N. p., 2017. Web. doi:10.1038/s41467-017-02189-6.
Wang, Cheng, Li, Zhaoyi, Kim, Myoung-Hwan, Xiong, Xiao, Ren, Xi-Feng, Guo, Guang-Can, Yu, Nanfang, & Lončar, Marko. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. United States. doi:10.1038/s41467-017-02189-6.
Wang, Cheng, Li, Zhaoyi, Kim, Myoung-Hwan, Xiong, Xiao, Ren, Xi-Feng, Guo, Guang-Can, Yu, Nanfang, and Lončar, Marko. Fri . "Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides". United States. doi:10.1038/s41467-017-02189-6. https://www.osti.gov/servlets/purl/1624063.
@article{osti_1624063,
title = {Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides},
author = {Wang, Cheng and Li, Zhaoyi and Kim, Myoung-Hwan and Xiong, Xiao and Ren, Xi-Feng and Guo, Guang-Can and Yu, Nanfang and Lončar, Marko},
abstractNote = {The phase-matching condition is a key aspect in nonlinear wavelength conversion processes, which requires the momenta of the photons involved in the processes to be conserved. Conventionally, nonlinear phase matching is achieved using either birefringent or periodically poled nonlinear crystals, which requires careful dispersion engineering and is usually narrowband. In recent years, metasurfaces consisting of densely packed arrays of optical antennas have been demonstrated to provide an effective optical momentum to bend light in arbitrary ways. Here, we demonstrate that gradient metasurface structures consisting of phased array antennas are able to circumvent the phase-matching requirement in on-chip nonlinear wavelength conversion. We experimentally demonstrate phase-matching-free second harmonic generation over many coherent lengths in thin film lithium niobate waveguides patterned with the gradient metasurfaces. Efficient second harmonic generation in the metasurface-based devices is observed over a wide range of pump wavelengths (λ = 1580–1650 nm).},
doi = {10.1038/s41467-017-02189-6},
journal = {Nature Communications},
issn = {2041-1723},
number = 1,
volume = 8,
place = {United States},
year = {2017},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Toward Plasmonics with Nanometer Precision: Nonlinear Optics of Helium-Ion Milled Gold Nanoantennas
journal, July 2014

  • Kollmann, Heiko; Piao, Xianji; Esmann, Martin
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl5019589

Difference-frequency generation with quantum-limited efficiency in triply-resonant nonlinear cavities
journal, January 2009

  • Burgess, Ian B.; Rodriguez, Alejandro W.; McCutcheon, Murray W.
  • Optics Express, Vol. 17, Issue 11
  • DOI: 10.1364/OE.17.009241

Multiresonant Broadband Optical Antennas As Efficient Tunable Nanosources of Second Harmonic Light
journal, January 2012

  • Aouani, Heykel; Navarro-Cia, Miguel; Rahmani, Mohsen
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl302665m

Nonlinear plasmonics
journal, November 2012


Second-Harmonic Generation in GaAs Photonic Crystal Cavities in (111)B and (001) Crystal Orientations
journal, May 2014

  • Buckley, Sonia; Radulaski, Marina; Petykiewicz, Jan
  • ACS Photonics, Vol. 1, Issue 6
  • DOI: 10.1021/ph500054u

Second-harmonic generation using -quasi-phasematching in a GaAs whispering-gallery-mode microcavity
journal, January 2014

  • Kuo, Paulina S.; Bravo-Abad, Jorge; Solomon, Glenn S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4109

Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators
journal, May 2012

  • Pernice, W. H. P.; Xiong, C.; Schuck, C.
  • Applied Physics Letters, Vol. 100, Issue 22
  • DOI: 10.1063/1.4722941

Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities
journal, January 2009

  • Burgess, Ian B.; Zhang, Yinan; McCutcheon, Murray W.
  • Optics Express, Vol. 17, Issue 22
  • DOI: 10.1364/OE.17.020099

Metamaterials with Tailored Nonlinear Optical Response
journal, January 2012

  • Husu, Hannu; Siikanen, Roope; Mäkitalo, Jouni
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203524k

Integrated high quality factor lithium niobate microdisk resonators
journal, January 2014

  • Wang, Cheng; Burek, Michael J.; Lin, Zin
  • Optics Express, Vol. 22, Issue 25
  • DOI: 10.1364/OE.22.030924

Nonlinear Fano-Resonant Dielectric Metasurfaces
journal, October 2015


Ultralow-power all-optical RAM based on nanocavities
journal, February 2012

  • Nozaki, Kengo; Shinya, Akihiko; Matsuo, Shinji
  • Nature Photonics, Vol. 6, Issue 4
  • DOI: 10.1038/nphoton.2012.2

Second harmonic generation in GaP photonic crystal waveguides
journal, June 2011

  • Rivoire, Kelley; Buckley, Sonia; Hatami, Fariba
  • Applied Physics Letters, Vol. 98, Issue 26
  • DOI: 10.1063/1.3607288

Lithium niobate on insulator (LNOI) for micro-photonic devices
journal, February 2012


Optical frequency comb generation from a monolithic microresonator
journal, December 2007

  • Del’Haye, P.; Schliesser, A.; Arcizet, O.
  • Nature, Vol. 450, Issue 7173
  • DOI: 10.1038/nature06401

Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces
journal, April 2017

  • Li, Zhaoyi; Kim, Myoung-Hwan; Wang, Cheng
  • Nature Nanotechnology, Vol. 12, Issue 7
  • DOI: 10.1038/nnano.2017.50

Reverse proton exchange for buried waveguides in LiNbO_3
journal, January 1998

  • Korkishko, Yu. N.; Fedorov, V. A.; Morozova, T. M.
  • Journal of the Optical Society of America A, Vol. 15, Issue 7
  • DOI: 10.1364/JOSAA.15.001838

Microresonator-Based Optical Frequency Combs
journal, April 2011


Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides
journal, March 2009


Enhanced Third-Harmonic Generation in Silicon Nanoparticles Driven by Magnetic Response
journal, October 2014

  • Shcherbakov, Maxim R.; Neshev, Dragomir N.; Hopkins, Ben
  • Nano Letters, Vol. 14, Issue 11, p. 6488-6492
  • DOI: 10.1021/nl503029j

Terahertz-wave generation in quasi-phase-matched GaAs
journal, October 2006

  • Vodopyanov, K. L.; Fejer, M. M.; Yu, X.
  • Applied Physics Letters, Vol. 89, Issue 14
  • DOI: 10.1063/1.2357551

Visible-to-Telecom Quantum Frequency Conversion of Light from a Single Quantum Emitter
journal, October 2012


A photonic quantum information interface
journal, September 2005


Collective Effects in Second-Harmonic Generation from Split-Ring-Resonator Arrays
journal, July 2012


All-optical control of light on a silicon chip
journal, October 2004

  • Almeida, Vilson R.; Barrios, Carlos A.; Panepucci, Roberto R.
  • Nature, Vol. 431, Issue 7012
  • DOI: 10.1038/nature02921

Second harmonic generation in nano-structured thin-film lithium niobate waveguides
journal, January 2017

  • Wang, Cheng; Xiong, Xiao; Andrade, Nicolas
  • Optics Express, Vol. 25, Issue 6
  • DOI: 10.1364/OE.25.006963

Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide
journal, January 1989

  • Lim, E. J.; Fejer, M. M.; Byer, R. L.
  • Electronics Letters, Vol. 25, Issue 3
  • DOI: 10.1049/el:19890127

Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization
journal, January 2016


Tailoring Spatiotemporal Light Confinement in Single Plasmonic Nanoantennas
journal, January 2012

  • Hanke, Tobias; Cesar, Julijan; Knittel, Vanessa
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl2041047

Thin film wavelength converters for photonic integrated circuits
journal, January 2016


Fabrication of periodically poled lithium tantalate for UV generation with diode lasers
journal, August 2001


High-efficiency second-harmonic generation in doubly-resonant χ^(2) microring resonators
journal, January 2012

  • Bi, Zhuan-Fang; Rodriguez, Alejandro W.; Hashemi, Hila
  • Optics Express, Vol. 20, Issue 7
  • DOI: 10.1364/OE.20.007526

Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation
journal, April 2015

  • Celebrano, Michele; Wu, Xiaofei; Baselli, Milena
  • Nature Nanotechnology, Vol. 10, Issue 5, p. 412-417
  • DOI: 10.1038/nnano.2015.69

Augmenting Second Harmonic Generation Using Fano Resonances in Plasmonic Systems
journal, March 2013

  • Thyagarajan, Krishnan; Butet, Jérémy; Martin, Olivier J. F.
  • Nano Letters, Vol. 13, Issue 4
  • DOI: 10.1021/nl400636z

Design of nano-groove photonic crystal cavities in lithium niobate
journal, January 2015

  • Li, Yihang; Wang, Cheng; Loncar, Marko
  • Optics Letters, Vol. 40, Issue 12
  • DOI: 10.1364/OL.40.002902

    Works referencing / citing this record:

    A Theoretical Study on Rib‐Type Photonic Wires Based on LiNbO 3 Thin Film on Insulator
    journal, July 2019

    • Xu, Qing; Shao, Yan‐Xue; Piao, Rui‐Qi
    • Advanced Theory and Simulations, Vol. 2, Issue 10
    • DOI: 10.1002/adts.201900115