skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: STRIDES: Spectroscopic and photometric characterization of the environment and effects of mass along the line of sight to the gravitational lenses DES J0408–5354 and WGD 2038–4008

Journal Article · · Monthly Notices of the Royal Astronomical Society
ORCiD logo [1];  [2]; ORCiD logo [3];  [4]; ORCiD logo [2];  [5];  [5];  [6]; ORCiD logo [7];  [7]; ORCiD logo [8];  [9]; ORCiD logo [10];  [11];  [12]; ORCiD logo [13]; ORCiD logo [14];  [15];  [2]; ORCiD logo [16] more »;  [17];  [18];  [19]; ORCiD logo [20]; ORCiD logo [21];  [22];  [23];  [24];  [25]; ORCiD logo [20];  [26];  [2];  [19]; ORCiD logo [27];  [28];  [2];  [23];  [16]; ORCiD logo [23]; ORCiD logo [29];  [21];  [25];  [2]; ORCiD logo [30];  [31];  [32];  [33];  [2];  [25];  [34]; ORCiD logo [35];  [21];  [36]; ORCiD logo [25];  [21]; ORCiD logo [35];  [20];  [2];  [37];  [23];  [20]; ORCiD logo [38]; ORCiD logo [39]; ORCiD logo [40];  [41];  [37];  [2];  [42] « less
  1. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA;Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA
  2. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
  3. National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
  4. Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA;Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  5. DARK, Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, DK-2100 Copenhagen, Denmark
  6. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA;Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA;Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  7. Department of Physics and Astronomy, PAB, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547, USA
  8. Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
  9. Department of Physics and Astronomy, PAB, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547, USA;Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA
  10. Departamento de Ciencias Fisicas, Universidad Andres Bello Fernandez Concha 700, Las Condes, Santiago, Chile;Millennium Institute of Astrophysics, Monsen ̃ or Nuncio Sotero Sanz 100, Oficina 104, 7500011 Providencia, Santiago, Chile
  11. Department of Physics, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
  12. Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
  13. STAR Institute, Quartier Agora - Allée du six Aout, 19c, B-4000 Liège, Belgium
  14. Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
  15. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil;Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil
  16. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  17. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France;Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France
  18. Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton BN1 9QH, UK
  19. Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
  20. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain
  21. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA;National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  22. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  23. Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain;Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  24. INAF-Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste, Italy;Institute for Fundamental Physics of the Universe, Via Beirut 2, I-34014 Trieste, Italy
  25. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil;Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil
  26. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
  27. Department of Astronomy/Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA;Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  28. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  29. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA;Kavli Institute for Particle Astrophysics and Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA;SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  30. School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
  31. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA;Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  32. Center for Astrophysics, Harvard and Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
  33. Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia;Lowell Observatory, 1400 Mars Hill Rd, Flagstaff, AZ 86001, USA
  34. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
  35. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
  36. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain;Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  37. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  38. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  39. Brandeis University, Physics Department, 415 South Street, Waltham, MA 02453, USA
  40. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  41. National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  42. Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany;Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr. 1, D-81679 München, Germany

In time-delay cosmography, three of the key ingredients are (1) determining the velocity dispersion of the lensing galaxy, (2) identifying galaxies and groups along the line of sight with sufficient proximity and mass to be included in the mass model, and (3) estimating the external convergence κext from less massive structures that are not included in the mass model. We present results on all three of these ingredients for two time-delay lensed quad quasar systems, DES J0408–5354 and WGD 2038–4008 . We use the Gemini, Magellan, and VLT telescopes to obtain spectra to both measure the stellar velocity dispersions of the main lensing galaxies and to identify the line-of-sight galaxies in these systems. Next, we identify 10 groups in DES J0408–5354 and two groups in WGD 2038–4008 using a group-finding algorithm. We then identify the most significant galaxy and galaxy-group perturbers using the ‘flexion shift’ criterion. We determine the probability distribution function of the external convergence κext for both of these systems based on our spectroscopy and on the DES-only multiband wide-field observations. Using weighted galaxy counts, calibrated based on the Millennium Simulation, we find that DES J0408–5354 is located in a significantly underdense environment, leading to a tight (width $$\sim 3{{\ \rm per\ cent}}$$), negative-value κext distribution. On the other hand, WGD 2038–4008 is located in an environment of close to unit density, and its low source redshift results in a much tighter κext of $$\sim 1{{\ \rm per\ cent}}$$, as long as no external shear constraints are imposed.

Research Organization:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Aeronautics and Space Administration (NASA); National Science Foundation (NSF); European Research Council (ERC); USDOE Office of Science (SC), High Energy Physics (HEP); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
Contributing Organization:
DES Collaboration
Grant/Contract Number:
AC02-07CH11359; AC02-76SF00515; AC05-00OR22725; HST-GO-15320; AST-1715611; 787886; SC0019193
OSTI ID:
1616309
Alternate ID(s):
OSTI ID: 1768040; OSTI ID: 1783169; OSTI ID: 1819568
Report Number(s):
FERMILAB-PUB-20-082-AE-SCD; arXiv:2003.12117; oai:inspirehep.net:1788583
Journal Information:
Monthly Notices of the Royal Astronomical Society, Vol. 498, Issue 3; ISSN 0035-8711
Publisher:
Royal Astronomical SocietyCopyright Statement
Country of Publication:
United States
Language:
English

References (66)

Ensemble samplers with affine invariance journal January 2010
SExtractor: Software for source extraction journal June 1996
The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign – I. Overview and classification of candidates selected by two techniques journal August 2018
The hierarchical formation of the brightest cluster galaxies journal February 2007
Measures of location and scale for velocities in clusters of galaxies - A robust approach journal July 1990
CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey: CFHTLenS journal October 2012
Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey journal September 2006
Ray-tracing through the Millennium Simulation: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing journal March 2009
Reconciling mass estimates of ultradiffuse galaxies journal October 2018
Discovery of the Lensed Quasar System DES J0408-5354 journal March 2017
redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG journal April 2014
Clash: Precise new Constraints on the mass Profile of the Galaxy Cluster A2261 journal August 2012
Evolutionary stellar population synthesis with MILES - I. The base models and a new line index system journal March 2010
H0LiCOW – III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435−1223 through weighted galaxy counts★ journal February 2017
H0LiCOW – I. H0 Lenses in COSMOGRAIL's Wellspring: program overview journal February 2017
Methods for rapidly processing angular masks of next-generation galaxy surveys journal July 2008
The dark Energy Camera journal October 2015
emcee : The MCMC Hammer
  • Foreman-Mackey, Daniel; Hogg, David W.; Lang, Dustin
  • Publications of the Astronomical Society of the Pacific, Vol. 125, Issue 925 https://doi.org/10.1086/670067
journal March 2013
Planck intermediate results : XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap journal December 2016
On the Possibility of Determining Hubble's Parameter and the Masses of Galaxies from the Gravitational Lens Effect journal September 1964
Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology journal April 2018
A SHARP view of H0LiCOW: H0 from three time-delay gravitational lens systems with adaptive optics imaging journal September 2019
Galaxy number counts and implications for strong lensing: Galaxy number counts and strong lensing journal October 2010
Galaxy formation in the Planck cosmology – I. Matching the observed evolution of star formation rates, colours and stellar masses journal June 2015
Accurate Stellar Kinematics at Faint Magnitudes: Application to the BoÖTes i Dwarf Spheroidal Galaxy journal July 2011
A new hybrid framework to efficiently model lines of sight to gravitational lenses journal August 2014
The Dark Energy Survey: Data Release 1 journal November 2018
Time delay cosmography journal July 2016
The Dark Energy Survey Image Processing Pipeline journal May 2018
Dissecting the Gravitational lens B1608+656. ii. Precision Measurements of the Hubble Constant, Spatial Curvature, and the dark Energy Equation of State journal February 2010
Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North journal December 1999
A compact early-type galaxy at z= 0.6 under a magnifying lens: evidence for inside-out growth: Super-resolving a compact ETG at z = 0.6 journal December 2010
The Luminosity Function and Stellar Evolution. journal January 1955
Is every strong lens model unhappy in its own way? Uniform modelling of a sample of 13 quadruply+ imaged quasars journal December 2018
IMACS: The Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade
  • Dressler, Alan; Bigelow, Bruce; Hare, Tyson
  • Publications of the Astronomical Society of the Pacific, Vol. 123, Issue 901 https://doi.org/10.1086/658908
journal March 2011
Astropy: A community Python package for astronomy journal September 2013
DES meets Gaia: discovery of strongly lensed quasars from a multiplet search journal June 2018
Medium-resolution Isaac Newton Telescope library of empirical spectra journal September 2006
Quantifying Environmental and Line-of-sight Effects in Models of Strong Gravitational Lens Systems journal February 2017
A Spectroscopic Survey of the Fields of 28 Strong Gravitational Lenses: the Group Catalog journal December 2016
Bayesian Photometric Redshift Estimation journal June 2000
Galactic Stellar and Substellar Initial Mass Function journal July 2003
Three steps towards robust regression journal March 1976
Detailed Decomposition of Galaxy Images. ii. Beyond Axisymmetric Models journal April 2010
STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408−5354 journal March 2020
The scaling relation between richness and mass of galaxy clusters: a Bayesian approach journal March 2010
THE SCALING OF STELLAR MASS AND CENTRAL STELLAR VELOCITY DISPERSION FOR QUIESCENT GALAXIES AT z < 0.7 journal December 2016
Line profiles from discrete kinematic data: Line profiles from discrete kinematic data journal July 2012
H0LiCOW – IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant journal January 2019
Simulations of the formation, evolution and clustering of galaxies and quasars journal June 2005
Current Velocity Data on Dwarf Galaxy NGC 1052-DF2 do not Constrain it to Lack Dark Matter journal May 2018
H0LiCOW – X. Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI 2033−4723 journal September 2019
The internal structure of the lens PG1115+080: breaking degeneracies in the value of the Hubble constant journal September 2002
A scheme to deal accurately and efficiently with complex angular masks in galaxy surveys journal March 2004
DNF – Galaxy photometric redshift by Directional Neighbourhood Fitting journal April 2016
ULySS : a full spectrum fitting package journal May 2009
A Method for Measuring (Slopes of) the mass Profiles of Dwarf Spheroidal Galaxies journal November 2011
Mapping Compound Cosmic Telescopes Containing Multiple Projected Cluster-Scale Halos journal December 2013
Stellar population synthesis at the resolution of 2003 journal October 2003
Reconstructing the lensing mass in the Universe from photometric catalogue data journal April 2013
Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies journal April 2018
The MUSE Hubble Ultra Deep Field Survey: V. Spatially resolved stellar kinematics of galaxies at redshift 0.2 ≲  z  ≲ 0.8⋆ journal November 2017
H0LiCOW – II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435−1223 journal June 2017
Improving the Precision of Time-Delay Cosmography with Observations of Galaxies Along the line of Sight journal April 2013
Galaxy groups at 0.3 ≤ z ≤ 0.55 - I. Group properties journal March 2005
RVSAO 2.0: Digital Redshifts and Radial Velocities
  • Kurtz, Michael J. ; Mink, Douglas J. 
  • Publications of the Astronomical Society of the Pacific, Vol. 110, Issue 750 https://doi.org/10.1086/316207
journal August 1998

Similar Records

TDCOSMO. IX. Systematic comparison between lens modelling software programs: time delay prediction for WGD 2038-4008
Journal Article · Tue Nov 15 00:00:00 EST 2022 · Astronomy and Astrophysics · OSTI ID:1616309

STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354
Journal Article · Sat Mar 28 00:00:00 EDT 2020 · Monthly Notices of the Royal Astronomical Society · OSTI ID:1616309

Discovery of the lensed quasar system DES J0408-5354
Journal Article · Mon Mar 27 00:00:00 EDT 2017 · The Astrophysical Journal. Letters (Online) · OSTI ID:1616309