skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Functional metagenomics identifies an exosialidase with an inverting catalytic mechanism that defines a new glycoside hydrolase family (GH156)

Abstract

Exosialidases are glycoside hydrolases that remove a single terminal sialic acid residue from oligosaccharides. They are widely distributed in biology, having been found in prokaryotes, eukaryotes, and certain viruses. Most characterized prokaryotic sialidases are from organisms that are pathogenic or commensal with mammals. However, in this study, we used functional metagenomic screening to seek microbial sialidases encoded by environmental DNA isolated from an extreme ecological niche, a thermal spring. Using recombinant expression of potential exosialidase candidates and a fluorogenic sialidase substrate, we discovered an exosialidase having no homology to known sialidases. Phylogenetic analysis indicated that this protein is a member of a small family of bacterial proteins of previously unknown function. Proton NMR revealed that this enzyme functions via an inverting catalytic mechanism, a biochemical property that is distinct from those of known exosialidases. This unique inverting exosialidase defines a new CAZy glycoside hydrolase family we have designated GH156

Authors:
 [1];  [2]; ORCiD logo [3];  [4];  [2]
  1. New England Biolabs, Ipswich, MA (United States); Max Planck Inst. for Dynamics of Complex Technical Systems, Magdeburg (Germany)
  2. New England Biolabs, Ipswich, MA (United States)
  3. Max Planck Inst. for Dynamics of Complex Technical Systems, Magdeburg (Germany); glyXera GmbH, Magdeburg (Germany)
  4. Aix-Marseille Univ., Marseille (France); Inst. National de la Recherche Agronomique (INRA), Marseille (France); King Abdulaziz Univ., Jeddah (Saudi Arabia)
Publication Date:
Research Org.:
Univ. of Georgia, Athens, GA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1612315
Grant/Contract Number:  
SC0015662
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Biological Chemistry
Additional Journal Information:
Journal Volume: 293; Journal Issue: 47; Journal ID: ISSN 0021-9258
Publisher:
American Society for Biochemistry and Molecular Biology
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; biochemistry & molecular biology; functional metagenomics; inverting mechanism; extremophile; neuraminidase; sialidase; glycoside hydrolase; glycosylation; high-throughput screening (HTS); sialic acid

Citation Formats

Chuzel, Léa, Ganatra, Mehul B., Rapp, Erdmann, Henrissat, Bernard, and Taron, Christopher H. Functional metagenomics identifies an exosialidase with an inverting catalytic mechanism that defines a new glycoside hydrolase family (GH156). United States: N. p., 2018. Web. doi:10.1074/jbc.ra118.003302.
Chuzel, Léa, Ganatra, Mehul B., Rapp, Erdmann, Henrissat, Bernard, & Taron, Christopher H. Functional metagenomics identifies an exosialidase with an inverting catalytic mechanism that defines a new glycoside hydrolase family (GH156). United States. doi:10.1074/jbc.ra118.003302.
Chuzel, Léa, Ganatra, Mehul B., Rapp, Erdmann, Henrissat, Bernard, and Taron, Christopher H. Mon . "Functional metagenomics identifies an exosialidase with an inverting catalytic mechanism that defines a new glycoside hydrolase family (GH156)". United States. doi:10.1074/jbc.ra118.003302. https://www.osti.gov/servlets/purl/1612315.
@article{osti_1612315,
title = {Functional metagenomics identifies an exosialidase with an inverting catalytic mechanism that defines a new glycoside hydrolase family (GH156)},
author = {Chuzel, Léa and Ganatra, Mehul B. and Rapp, Erdmann and Henrissat, Bernard and Taron, Christopher H.},
abstractNote = {Exosialidases are glycoside hydrolases that remove a single terminal sialic acid residue from oligosaccharides. They are widely distributed in biology, having been found in prokaryotes, eukaryotes, and certain viruses. Most characterized prokaryotic sialidases are from organisms that are pathogenic or commensal with mammals. However, in this study, we used functional metagenomic screening to seek microbial sialidases encoded by environmental DNA isolated from an extreme ecological niche, a thermal spring. Using recombinant expression of potential exosialidase candidates and a fluorogenic sialidase substrate, we discovered an exosialidase having no homology to known sialidases. Phylogenetic analysis indicated that this protein is a member of a small family of bacterial proteins of previously unknown function. Proton NMR revealed that this enzyme functions via an inverting catalytic mechanism, a biochemical property that is distinct from those of known exosialidases. This unique inverting exosialidase defines a new CAZy glycoside hydrolase family we have designated GH156},
doi = {10.1074/jbc.ra118.003302},
journal = {Journal of Biological Chemistry},
issn = {0021-9258},
number = 47,
volume = 293,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Diversity of Microbial Sialic Acid Metabolism
journal, March 2004


Evidence for a sialosyl cation transition-state complex in the reaction of sialidase from influenza virus
journal, July 1992


Complex Glycan Catabolism by the Human Gut Microbiota: The Bacteroidetes Sus-like Paradigm
journal, June 2009

  • Martens, Eric C.; Koropatkin, Nicole M.; Smith, Thomas J.
  • Journal of Biological Chemistry, Vol. 284, Issue 37
  • DOI: 10.1074/jbc.R109.022848

Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data
journal, May 2013

  • Chin, Chen-Shan; Alexander, David H.; Marks, Patrick
  • Nature Methods, Vol. 10, Issue 6
  • DOI: 10.1038/nmeth.2474

Symbol Nomenclature for Graphical Representations of Glycans
journal, November 2015

  • Varki, Ajit; Cummings, Richard D.; Aebi, Markus
  • Glycobiology, Vol. 25, Issue 12
  • DOI: 10.1093/glycob/cwv091

Biomining active cellulases from a mining bioremediation system
journal, September 2013


Innovating glycoside hydrolase activity on a same structural scaffold
journal, May 2017

  • Czjzek, Mirjam; Michel, Gurvan
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 19
  • DOI: 10.1073/pnas.1704802114

Structural and biochemical characterization of the broad substrate specificity of Bacteroides thetaiotaomicron commensal sialidase
journal, August 2013

  • Park, Kwang-Hyun; Kim, Min-Gyu; Ahn, Hee-Jeong
  • Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, Vol. 1834, Issue 8
  • DOI: 10.1016/j.bbapap.2013.04.028

A mechanistic study of sialic acid mutarotation: Implications for mutarotase enzymes
journal, January 2011

  • Chan, Jefferson; Sandhu, Gurtej; Bennet, Andrew J.
  • Organic & Biomolecular Chemistry, Vol. 9, Issue 13
  • DOI: 10.1039/c1ob05079f

Site-directed mutagenesis of catalytic residues of influenza virus neuraminidase as an aid to drug design
journal, December 1998


1 H-NMR-Spektroskopischer Nachweis der N-Acetyl-α-D-neuraminsäure als primäres Spaltprodukt der Neuraminidasen
journal, January 1980

  • Friebolin, Horst; Brossmer, Reinhard; Keilich, Gunda
  • Hoppe-Seyler´s Zeitschrift für physiologische Chemie, Vol. 361, Issue 1
  • DOI: 10.1515/bchm2.1980.361.1.697

The Crystal Structure and Mode of Action of Trans-Sialidase, a Key Enzyme in Trypanosoma cruzi Pathogenesis
journal, October 2002


Mutants of Micromonospora viridifaciens sialidase have highly variable activities on natural and non-natural substrates
journal, January 2015

  • Jers, C.; Guo, Y.; Kepp, K. P.
  • Protein Engineering, Design and Selection, Vol. 28, Issue 2
  • DOI: 10.1093/protein/gzu054

Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector
journal, January 1986


1 H-NMR-Spektroskopie — Eine aussagekräftige Methode zur Bestimmung der Substratspezifität von Sialidasen
journal, January 1981

  • Friebolin, Horst; Baumann, Wolfgang; Keilich, Gunda
  • Hoppe-Seyler´s Zeitschrift für physiologische Chemie, Vol. 362, Issue 2
  • DOI: 10.1515/bchm2.1981.362.2.1455

The Sus operon: a model system for starch uptake by the human gut Bacteroidetes
journal, May 2016

  • Foley, Matthew H.; Cockburn, Darrell W.; Koropatkin, Nicole M.
  • Cellular and Molecular Life Sciences, Vol. 73, Issue 14
  • DOI: 10.1007/s00018-016-2242-x

Catalytic preference of Salmonella typhimurium LT2 sialidase for N -acetylneuraminic acid residues over N -glycolylneuraminic acid residues
journal, January 2013


Cloning, expression, and characterization of a novel sialidase from Brevibacterium casei: Sialidase from Brevibacterium casei
journal, April 2016

  • Wang, Xuedong; Long, Hui; Shen, Danhong
  • Biotechnology and Applied Biochemistry, Vol. 64, Issue 2
  • DOI: 10.1002/bab.1475

Functional metagenomics reveals novel β-galactosidases not predictable from gene sequences
journal, March 2017


A New Sialidase Mechanism: BACTERIOPHAGE K1F ENDO-SIALIDASE IS AN INVERTING GLYCOSIDASE
journal, May 2009

  • Morley, Thomas J.; Willis, Lisa M.; Whitfield, Chris
  • Journal of Biological Chemistry, Vol. 284, Issue 26
  • DOI: 10.1074/jbc.M109.003970

Glycoside hydrolases: Catalytic base/nucleophile diversity
journal, June 2010

  • Vuong, Thu V.; Wilson, David B.
  • Biotechnology and Bioengineering, Vol. 107, Issue 2, p. 195-205
  • DOI: 10.1002/bit.22838

Structures and mechanisms of glycosyl hydrolases
journal, September 1995


The carbohydrate-active enzymes database (CAZy) in 2013
journal, November 2013

  • Lombard, Vincent; Golaconda Ramulu, Hemalatha; Drula, Elodie
  • Nucleic Acids Research, Vol. 42, Issue D1
  • DOI: 10.1093/nar/gkt1178

The crystal structure of an intramolecular trans-sialidase with a NeuAcα2→3Gal specificity
journal, April 1998


Complete Genome Sequence of the Aerobic CO-Oxidizing Thermophile Thermomicrobium roseum
journal, January 2009


Identification and functional characterization of intracellular sialidase NeuA3 from Streptomyces avermitilis
journal, May 2015


Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes
journal, September 2016

  • DeCastro, María-Eugenia; Rodríguez-Belmonte, Esther; González-Siso, María-Isabel
  • Frontiers in Microbiology, Vol. 7
  • DOI: 10.3389/fmicb.2016.01521

Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing
journal, January 2014

  • Vester, Jan; Glaring, Mikkel; Stougaard, Peter
  • Microbial Cell Factories, Vol. 13, Issue 1
  • DOI: 10.1186/1475-2859-13-72

Structural basis of sialyltransferase activity in trypanosomal sialidases
journal, January 2000


Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution
journal, May 1983

  • Varghese, J. N.; Laver, W. G.; Colman, P. M.
  • Nature, Vol. 303, Issue 5912
  • DOI: 10.1038/303035a0

Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase.
journal, November 1993

  • Crennell, S. J.; Garman, E. F.; Laver, W. G.
  • Proceedings of the National Academy of Sciences, Vol. 90, Issue 21
  • DOI: 10.1073/pnas.90.21.9852

Functional metagenomics of extreme environments
journal, April 2016

  • Mirete, Salvador; Morgante, Verónica; González-Pastor, José Eduardo
  • Current Opinion in Biotechnology, Vol. 38
  • DOI: 10.1016/j.copbio.2016.01.017

Influenza B virus neuraminidase can synthesize its own inhibitor
journal, September 1993


Mechanisms of enzymatic glycoside hydrolysis
journal, January 1994


Crystal structure of Vibrio cholerae neuraminidase reveals dual lectin-like domains in addition to the catalytic domain
journal, June 1994


1H NMR Evidence That Salmonella typhimurium Sialidase Hydrolyzes Sialosides with Overall Retention of Configuration
journal, April 1995

  • Wilson, Jennifer C.; Angus, Donald I.; von Itzstein, Mark
  • Journal of the American Chemical Society, Vol. 117, Issue 15
  • DOI: 10.1021/ja00120a002

Characterization of a sialidase (neuraminidase) isolated fromClostridium chauvoei (Jakari strain)
journal, January 2006

  • Useh, N. M.; Ajanusi, J. O.; Esievo, K. A. N.
  • Cell Biochemistry and Function, Vol. 24, Issue 4
  • DOI: 10.1002/cbf.1240

Biotechnological applications of functional metagenomics in the food and pharmaceutical industries
journal, June 2015


Ab initio gene identification in metagenomic sequences
journal, April 2010

  • Zhu, Wenhan; Lomsadze, Alexandre; Borodovsky, Mark
  • Nucleic Acids Research, Vol. 38, Issue 12
  • DOI: 10.1093/nar/gkq275

Mutagenesis of the Conserved Active-Site Tyrosine Changes a Retaining Sialidase into an Inverting Sialidase
journal, November 2003

  • Watson, Jacqueline N.; Dookhun, Veedeeta; Borgford, Thor J.
  • Biochemistry, Vol. 42, Issue 43
  • DOI: 10.1021/bi035396g

Stereoselectivity of the Chinese hamster ovary cell sialidase: sialoside hydrolysis with overall retention of configuration
journal, January 1997

  • Kao, Yung-Hsiang; Lerner, Laura; Warner, Thomas G.
  • Glycobiology, Vol. 7, Issue 4
  • DOI: 10.1093/glycob/7.4.559

Substrate perturbation alters the glycoside hydrolase activities and community composition of switchgrass-adapted bacterial consortia
journal, December 2011

  • Gladden, John M.; Eichorst, Stephanie A.; Hazen, Terry C.
  • Biotechnology and Bioengineering, Vol. 109, Issue 5
  • DOI: 10.1002/bit.24388

    Works referencing / citing this record:

    Inverting family GH156 sialidases define an unusual catalytic motif for glycosidase action
    journal, October 2019


    A mycobacteriophage genomics approach to identify novel mycobacteriophage proteins with mycobactericidal properties
    journal, July 2019

    • Singh, Shweta; Godavarthi, Sapna; Kumar, Amit
    • Microbiology, Vol. 165, Issue 7
    • DOI: 10.1099/mic.0.000810