skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modulating Donor-Acceptor Transition Energies in Phosphorus-Boron Co-Doped Silicon Nanocrystals via X- and L-Type Ligands

Abstract

In this work, we explore the effect of ligand binding groups on the visible and NIR photoluminescent properties within phosphorus-boron co-doped silicon nanocrystals (PB:Si NCs) by exploiting both the X-type (covalent) and L-type (Lewis donor molecule) bonding interactions. We find that the cooperative nature of both X- and L-type bonding from alkoxide/alcohol, alkylamide/alkylamine, and alkylthiolate/alkylthiol on PB:Si NCs results in photoluminescence (PL) energy blue shifts from the as-synthesized, hydride-terminated NCs (PB:Si-H) in excess of 0.4 eV, depending on the surface termination. These PL blue shifts appear greatest in the most strongly confined samples with diameters <4 nm where the surface-to-volume ratio is high and, therefore, the ligand effects are most pronounced. A correlation between the donor group strength (either X-type or L-type) and the degree of D-A state modulation is found, and the proportion of the PL blue shift from the X- and L-type interactions is quantified. Raman spectroscopy is used to provide additional evidence of the strength of the L-type donor groups. Additionally, we probe how the nature of the ligand chemistry affects the radiative lifetime and PL efficiency and find that the ligands do not significantly change the D-A emission dynamics, and all samples retain the long 50-130more » us lifetimes characteristic of these transitions. Finally, we describe three mechanisms that operate to affect the D-A recombination energies: (1) X-type ligands that modulate the PB:Si-X NC wavefunction; (2) L-type ligands that perturb the donor and acceptor states via a molecular orbital theory picture; and (3) X- and L-type ligands that cause a dielectric increase around the PB:Si NC core, which provides Coulomb screening and modulates the donor and acceptor states even further.« less

Authors:
 [1]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22), Solar Photochemistry Program
OSTI Identifier:
1603926
Report Number(s):
NREL/JA-5900-75122
DOE Contract Number:  
AC36-08GO28308
Resource Type:
Journal Article
Journal Name:
Faraday Discussions
Additional Journal Information:
Journal Name: Faraday Discussions
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; nanocrystal; X-type ligands; L-type ligands; transition energies

Citation Formats

Pach, Gregory, Carroll, Gerard, Zhang, Hanyu, and Neale, Nathan R. Modulating Donor-Acceptor Transition Energies in Phosphorus-Boron Co-Doped Silicon Nanocrystals via X- and L-Type Ligands. United States: N. p., 2020. Web. doi:10.1039/C9FD00106A.
Pach, Gregory, Carroll, Gerard, Zhang, Hanyu, & Neale, Nathan R. Modulating Donor-Acceptor Transition Energies in Phosphorus-Boron Co-Doped Silicon Nanocrystals via X- and L-Type Ligands. United States. doi:10.1039/C9FD00106A.
Pach, Gregory, Carroll, Gerard, Zhang, Hanyu, and Neale, Nathan R. Mon . "Modulating Donor-Acceptor Transition Energies in Phosphorus-Boron Co-Doped Silicon Nanocrystals via X- and L-Type Ligands". United States. doi:10.1039/C9FD00106A.
@article{osti_1603926,
title = {Modulating Donor-Acceptor Transition Energies in Phosphorus-Boron Co-Doped Silicon Nanocrystals via X- and L-Type Ligands},
author = {Pach, Gregory and Carroll, Gerard and Zhang, Hanyu and Neale, Nathan R},
abstractNote = {In this work, we explore the effect of ligand binding groups on the visible and NIR photoluminescent properties within phosphorus-boron co-doped silicon nanocrystals (PB:Si NCs) by exploiting both the X-type (covalent) and L-type (Lewis donor molecule) bonding interactions. We find that the cooperative nature of both X- and L-type bonding from alkoxide/alcohol, alkylamide/alkylamine, and alkylthiolate/alkylthiol on PB:Si NCs results in photoluminescence (PL) energy blue shifts from the as-synthesized, hydride-terminated NCs (PB:Si-H) in excess of 0.4 eV, depending on the surface termination. These PL blue shifts appear greatest in the most strongly confined samples with diameters <4 nm where the surface-to-volume ratio is high and, therefore, the ligand effects are most pronounced. A correlation between the donor group strength (either X-type or L-type) and the degree of D-A state modulation is found, and the proportion of the PL blue shift from the X- and L-type interactions is quantified. Raman spectroscopy is used to provide additional evidence of the strength of the L-type donor groups. Additionally, we probe how the nature of the ligand chemistry affects the radiative lifetime and PL efficiency and find that the ligands do not significantly change the D-A emission dynamics, and all samples retain the long 50-130 us lifetimes characteristic of these transitions. Finally, we describe three mechanisms that operate to affect the D-A recombination energies: (1) X-type ligands that modulate the PB:Si-X NC wavefunction; (2) L-type ligands that perturb the donor and acceptor states via a molecular orbital theory picture; and (3) X- and L-type ligands that cause a dielectric increase around the PB:Si NC core, which provides Coulomb screening and modulates the donor and acceptor states even further.},
doi = {10.1039/C9FD00106A},
journal = {Faraday Discussions},
number = ,
volume = ,
place = {United States},
year = {2020},
month = {1}
}

Works referenced in this record:

Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers
journal, March 2008


Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications
journal, January 2010

  • Talapin, Dmitri V.; Lee, Jong-Soo; Kovalenko, Maksym V.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900137k

Long-lived luminescence of silicon nanocrystals: from principles to applications
journal, January 2017

  • Mazzaro, Raffaello; Romano, Francesco; Ceroni, Paola
  • Phys. Chem. Chem. Phys., Vol. 19, Issue 39
  • DOI: 10.1039/C7CP05208A

Quasi-Direct Optical Transitions in Silicon Nanocrystals with Intensity Exceeding the Bulk
journal, February 2016


Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots
journal, February 2017

  • Meinardi, Francesco; Ehrenberg, Samantha; Dhamo, Lorena
  • Nature Photonics, Vol. 11, Issue 3
  • DOI: 10.1038/nphoton.2017.5

Size-Dependent Absolute Quantum Yields for Size-Separated Colloidally-Stable Silicon Nanocrystals
journal, December 2011

  • Mastronardi, Melanie L.; Maier-Flaig, Florian; Faulkner, Daniel
  • Nano Letters, Vol. 12, Issue 1
  • DOI: 10.1021/nl2036194

Synthesis and Spectroscopy of Silver-Doped PbSe Quantum Dots
journal, July 2017

  • Kroupa, Daniel M.; Hughes, Barbara K.; Miller, Elisa M.
  • Journal of the American Chemical Society, Vol. 139, Issue 30
  • DOI: 10.1021/jacs.7b04551

n -Type PbSe Quantum Dots via Post-Synthetic Indium Doping
journal, September 2018

  • Lu, Haipeng; Carroll, Gerard M.; Chen, Xihan
  • Journal of the American Chemical Society, Vol. 140, Issue 42
  • DOI: 10.1021/jacs.8b07910

Doped Silicon Nanocrystal Plasmonics
journal, March 2017


Photoluminescence from B-doped Si nanocrystals
journal, June 1998

  • Fujii, Minoru; Hayashi, Shinji; Yamamoto, Keiichi
  • Journal of Applied Physics, Vol. 83, Issue 12
  • DOI: 10.1063/1.367976

Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals
journal, November 2000


Doping the undopable
journal, July 2005


Doping semiconductor nanocrystals
journal, July 2005

  • Erwin, Steven C.; Zu, Lijun; Haftel, Michael I.
  • Nature, Vol. 436, Issue 7047
  • DOI: 10.1038/nature03832

Doping efficiency, dopant location, and oxidation of Si nanocrystals
journal, March 2008

  • Pi, X. D.; Gresback, R.; Liptak, R. W.
  • Applied Physics Letters, Vol. 92, Issue 12
  • DOI: 10.1063/1.2897291

Phosphorus-Doped Silicon Nanocrystals Exhibiting Mid-Infrared Localized Surface Plasmon Resonance
journal, February 2013

  • Rowe, David J.; Jeong, Jong Seok; Mkhoyan, K. Andre
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl4001184

Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus
journal, July 2015


Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals
journal, September 2017


Free electron-driven photophysics in n-type doped silicon nanocrystals
journal, January 2018


Size-Dependent Asymmetric Auger Interactions in Plasma-Produced n- and p-Type-Doped Silicon Nanocrystals
journal, February 2019

  • Limpens, Rens; Pach, Gregory F.; Mulder, David W.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 9
  • DOI: 10.1021/acs.jpcc.9b00223

Nonthermal Plasma-Synthesized Phosphorus–Boron co-Doped Si Nanocrystals: A New Approach to Nontoxic NIR-Emitters
journal, May 2019


Electronic structure of Si nanocrystals codoped with boron and phosphorus
journal, July 2018


Optical generation of electron-hole pairs in phosphor and boron co-doped Si nanocrystals in SiO 2: Optical generation of e-h pairs in PB co-doped Si NCs in SiO 2
journal, November 2016

  • Chung, Nguyen Xuan; Limpens, Rens; Lesage, Arnon
  • physica status solidi (a), Vol. 213, Issue 11
  • DOI: 10.1002/pssa.201600381

Below bulk-band-gap photoluminescence at room temperature from heavily P- and B-doped Si nanocrystals
journal, August 2003

  • Fujii, Minoru; Toshikiyo, Kimiaki; Takase, Yuji
  • Journal of Applied Physics, Vol. 94, Issue 3
  • DOI: 10.1063/1.1590409

Control of photoluminescence properties of Si nanocrystals by simultaneously doping n- and p-type impurities
journal, August 2004

  • Fujii, Minoru; Yamaguchi, Yasuhiro; Takase, Yuji
  • Applied Physics Letters, Vol. 85, Issue 7
  • DOI: 10.1063/1.1779955

Size-Dependence of Acceptor and Donor Levels of Boron and Phosphorus Codoped Colloidal Silicon Nanocrystals
journal, March 2016


Codoping n- and p-Type Impurities in Colloidal Silicon Nanocrystals: Controlling Luminescence Energy from below Bulk Band Gap to Visible Range
journal, May 2013

  • Sugimoto, Hiroshi; Fujii, Minoru; Imakita, Kenji
  • The Journal of Physical Chemistry C, Vol. 117, Issue 22
  • DOI: 10.1021/jp4027767

Negligible Electronic Interaction between Photoexcited Electron–Hole Pairs and Free Electrons in Phosphorus–Boron Co-Doped Silicon Nanocrystals
journal, February 2018

  • Limpens, Rens; Fujii, Minoru; Neale, Nathan R.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 11
  • DOI: 10.1021/acs.jpcc.7b12313

Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification
journal, May 2017

  • Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15257

Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding
journal, November 2013

  • Anderson, Nicholas C.; Hendricks, Mark P.; Choi, Joshua J.
  • Journal of the American Chemical Society, Vol. 135, Issue 49, p. 18536-18548
  • DOI: 10.1021/ja4086758

The coordination chemistry of nanocrystal surfaces
journal, February 2015


A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction
journal, February 1993

  • Littau, K. A.; Szajowski, P. J.; Muller, A. J.
  • The Journal of Physical Chemistry, Vol. 97, Issue 6
  • DOI: 10.1021/j100108a019

Chemical Insight into the Origin of Red and Blue Photoluminescence Arising from Freestanding Silicon Nanocrystals
journal, February 2013

  • Dasog, Mita; Yang, Zhenyu; Regli, Sarah
  • ACS Nano, Vol. 7, Issue 3
  • DOI: 10.1021/nn4000644

Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals
journal, July 2013

  • Wheeler, Lance M.; Neale, Nathan R.; Chen, Ting
  • Nature Communications, Vol. 4, Article No. 2197
  • DOI: 10.1038/ncomms3197

Tailoring the optical gap of silicon quantum dots without changing their size
journal, January 2014

  • Li, Huashan; Wu, Zhigang; Zhou, Tianlei
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 36
  • DOI: 10.1039/C4CP03042G

Bandgap Tuning of Silicon Quantum Dots by Surface Functionalization with Conjugated Organic Groups
journal, May 2015

  • Zhou, Tianlei; Anderson, Ryan T.; Li, Huashan
  • Nano Letters, Vol. 15, Issue 6
  • DOI: 10.1021/nl504051x

Influence of Halides on the Optical Properties of Silicon Quantum Dots
journal, February 2015


Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands
journal, April 2018


Matrix-embedded silicon quantum dots for photovoltaic applications: a theoretical study of critical factors
journal, January 2011

  • Luo, Jun-Wei; Stradins, Paul; Zunger, Alex
  • Energy & Environmental Science, Vol. 4, Issue 7
  • DOI: 10.1039/c1ee01026c

Synthesis, Characterization, and Modeling of Nitrogen-Passivated Colloidal and Thin Film Silicon Nanocrystals
journal, January 2006

  • Dal Negro, Luca; Hamel, Sebastien; Zaitseva, Natalia
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, Issue 6
  • DOI: 10.1109/JSTQE.2006.883693

Illuminating Silicon Surface Hydrosilylation: An Unexpected Plurality of Mechanisms
journal, September 2013

  • Buriak, Jillian M.
  • Chemistry of Materials, Vol. 26, Issue 1, p. 763-772
  • DOI: 10.1021/cm402120f

Silyl Radical Abstraction in the Functionalization of Plasma-Synthesized Silicon Nanocrystals
journal, September 2015

  • Wheeler, Lance M.; Anderson, Nicholas C.; Palomaki, Peter K. B.
  • Chemistry of Materials, Vol. 27, Issue 19, p. 6869-6878
  • DOI: 10.1021/acs.chemmater.5b03309

A new approach to the formal classification of covalent compounds of the elements
journal, September 1995


Effect of surface passivation on dopant distribution in Si quantum dots: The case of B and P doping
journal, April 2011

  • Ma, Jie; Wei, Su-Huai; Neale, Nathan R.
  • Applied Physics Letters, Vol. 98, Issue 17
  • DOI: 10.1063/1.3583663

Atom Probe Tomography Analysis of Boron and/or Phosphorus Distribution in Doped Silicon Nanocrystals
journal, July 2016

  • Nomoto, Keita; Sugimoto, Hiroshi; Breen, Andrew
  • The Journal of Physical Chemistry C, Vol. 120, Issue 31
  • DOI: 10.1021/acs.jpcc.6b06197

Thermodynamic Driving Force in the Spontaneous Formation of Inorganic Nanoparticle Solutions
journal, February 2018


Donor–Acceptor Pair Recombination in Size-Purified Silicon Quantum Dots
journal, September 2018


Tunneling in the Delayed Luminescence of Colloidal CdSe, Cu + -Doped CdSe, and CuInS 2 Semiconductor Nanocrystals and Relationship to Blinking
journal, November 2016

  • Marchioro, Arianna; Whitham, Patrick J.; Knowles, Kathryn E.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 47
  • DOI: 10.1021/acs.jpcc.6b08336

Quantum Confined Electron–Phonon Interaction in Silicon Nanocrystals
journal, February 2015

  • Sagar, D. M.; Atkin, Joanna M.; Palomaki, Peter K. B.
  • Nano Letters, Vol. 15, Issue 3
  • DOI: 10.1021/nl503671n

Plasma-Assisted Synthesis of Silicon Nanocrystal Inks
journal, September 2007

  • Mangolini, L.; Kortshagen, U.
  • Advanced Materials, Vol. 19, Issue 18, p. 2513-2519
  • DOI: 10.1002/adma.200700595

Photoluminescence, infrared, and Raman spectra of co-doped Si nanoparticles from first principles
journal, October 2018

  • Somogyi, Bálint; Bruyer, Emilie; Gali, Adam
  • The Journal of Chemical Physics, Vol. 149, Issue 15
  • DOI: 10.1063/1.5053100

Electronic Processes within Quantum Dot-Molecule Complexes
journal, August 2016


Relaxation of Exciton Confinement in CdSe Quantum Dots by Modification with a Conjugated Dithiocarbamate Ligand
journal, May 2010

  • Frederick, Matthew T.; Weiss, Emily A.
  • ACS Nano, Vol. 4, Issue 6
  • DOI: 10.1021/nn1007435

A Molecule to Detect and Perturb the Confinement of Charge Carriers in Quantum Dots
journal, December 2011

  • Frederick, Matthew T.; Amin, Victor A.; Cass, Laura C.
  • Nano Letters, Vol. 11, Issue 12
  • DOI: 10.1021/nl203222m

Effects of Surface-Passivating Ligands and Ultrasmall CdSe Nanocrystal Size on the Delocalization of Exciton Confinement
journal, June 2014

  • Teunis, Meghan B.; Dolai, Sukanta; Sardar, Rajesh
  • Langmuir, Vol. 30, Issue 26
  • DOI: 10.1021/la501533t

“Darker-than-Black” PbS Quantum Dots: Enhancing Optical Absorption of Colloidal Semiconductor Nanocrystals via Short Conjugated Ligands
journal, January 2015

  • Giansante, Carlo; Infante, Ivan; Fabiano, Eduardo
  • Journal of the American Chemical Society, Vol. 137, Issue 5
  • DOI: 10.1021/ja510739q

Surfactant Ligand Removal and Rational Fabrication of Inorganically Connected Quantum Dots
journal, December 2011

  • Zhang, Haitao; Hu, Bo; Sun, Liangfeng
  • Nano Letters, Vol. 11, Issue 12
  • DOI: 10.1021/nl202892p

Chalcogenol Ligand Toolbox for CdSe Nanocrystals and Their Influence on Exciton Relaxation Pathways
journal, February 2014

  • Buckley, Jannise J.; Couderc, Elsa; Greaney, Matthew J.
  • ACS Nano, Vol. 8, Issue 3
  • DOI: 10.1021/nn406109v

Control of PbSe Quantum Dot Surface Chemistry and Photophysics Using an Alkylselenide Ligand
journal, May 2012

  • Hughes, Barbara K.; Ruddy, Daniel A.; Blackburn, Jeffrey L.
  • ACS Nano, Vol. 6, Issue 6
  • DOI: 10.1021/nn301405j

Impact of Chalcogenide Ligands on Excited State Dynamics in CdSe Quantum Dots
journal, May 2015

  • Schnitzenbaumer, Kyle J.; Labrador, Tais; Dukovic, Gordana
  • The Journal of Physical Chemistry C, Vol. 119, Issue 23
  • DOI: 10.1021/acs.jpcc.5b02880

Phosphorus and Boron Codoped Colloidal Silicon Nanocrystals with Inorganic Atomic Ligands
journal, March 2013

  • Sugimoto, Hiroshi; Fujii, Minoru; Imakita, Kenji
  • The Journal of Physical Chemistry C, Vol. 117, Issue 13
  • DOI: 10.1021/jp312788k

Large Exciton Energy Shifts by Reversible Surface Exchange in 2D II–VI Nanocrystals
journal, November 2015

  • Zhou, Yang; Wang, Fudong; Buhro, William E.
  • Journal of the American Chemical Society, Vol. 137, Issue 48
  • DOI: 10.1021/jacs.5b09343