skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CO 3+1 network formation in ultra-high pressure carbonate liquids

Abstract

Carbonate liquids are an important class of molten salts, not just for industrial applications, but also in geological processes. Carbonates are generally expected to be simple liquids, in terms of ionic interactions between the molecular carbonate anions and metal cations, and therefore relatively structureless compared to more “polymerized” silicate melts. But there is increasing evidence from phase relations, metal solubility, glass spectroscopy and simulations to suggest the emergence of carbonate “networks” at length scales longer than the component molecular anions. The stability of these emergent structures are known to be sensitive to temperature, but are also predicted to be favoured by pressure. This is important as a recent study suggests that subducted surface carbonate may melt near the Earth’s transition zone (~44 km), representing a barrier to the deep carbon cycle depending on the buoyancy and viscosity of these liquids. In this study we demonstrate a major advance in our understanding of carbonate liquids by combining simulations and high pressure measurements on a carbonate glass, (K 2CO 3-MgCO 3) to pressures in excess of 40 GPa, far higher than any previous in situ study. We show the clear formation of extended low-dimensional carbonate networks of close CO 3 2– pairsmore » and the emergence of a “three plus one” local coordination environment, producing an unexpected increase in viscosity with pressure. Although carbonate melts may still be buoyant in the lower mantle, an increased viscosity by at least three orders of magnitude will restrict the upward mobility, possibly resulting in entrainment by the down-going slab.« less

Authors:
 [1];  [2];  [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [5];  [6]
  1. Univ. of Manchester at Harwell, Oxfordshire (United Kingdom); Sheffield Hallam Univ. (United Kingdom)
  2. Sheffield Hallam Univ. (United Kingdom)
  3. Univ. of Oxford (United Kingdom)
  4. Ehime Univ. (Japan); Carnegie Inst. of Washington, Argonne, IL (United States)
  5. Univ. of Bristol (United Kingdom)
  6. State Univ. of New York (SUNY), Stony Brook, NY (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF); NERC Thematic Grant
OSTI Identifier:
1597989
Grant/Contract Number:  
AC02-06CH11357; EAR-1722495; FG02-99ER45775; EP/R036225/1; EP/L015722/1; NE/M000419/1; NE/P002951/1
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
ENGLISH
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; computational chemistry; petrology; structure of solids and liquids

Citation Formats

Wilding, Martin, Bingham, Paul A., Wilson, Mark, Kono, Yoshio, Drewitt, James W. E., Brooker, Richard A., and Parise, John B. CO3+1 network formation in ultra-high pressure carbonate liquids. United States: N. p., 2019. Web. doi:10.1038/s41598-019-51306-6.
Wilding, Martin, Bingham, Paul A., Wilson, Mark, Kono, Yoshio, Drewitt, James W. E., Brooker, Richard A., & Parise, John B. CO3+1 network formation in ultra-high pressure carbonate liquids. United States. doi:10.1038/s41598-019-51306-6.
Wilding, Martin, Bingham, Paul A., Wilson, Mark, Kono, Yoshio, Drewitt, James W. E., Brooker, Richard A., and Parise, John B. Mon . "CO3+1 network formation in ultra-high pressure carbonate liquids". United States. doi:10.1038/s41598-019-51306-6. https://www.osti.gov/servlets/purl/1597989.
@article{osti_1597989,
title = {CO3+1 network formation in ultra-high pressure carbonate liquids},
author = {Wilding, Martin and Bingham, Paul A. and Wilson, Mark and Kono, Yoshio and Drewitt, James W. E. and Brooker, Richard A. and Parise, John B.},
abstractNote = {Carbonate liquids are an important class of molten salts, not just for industrial applications, but also in geological processes. Carbonates are generally expected to be simple liquids, in terms of ionic interactions between the molecular carbonate anions and metal cations, and therefore relatively structureless compared to more “polymerized” silicate melts. But there is increasing evidence from phase relations, metal solubility, glass spectroscopy and simulations to suggest the emergence of carbonate “networks” at length scales longer than the component molecular anions. The stability of these emergent structures are known to be sensitive to temperature, but are also predicted to be favoured by pressure. This is important as a recent study suggests that subducted surface carbonate may melt near the Earth’s transition zone (~44 km), representing a barrier to the deep carbon cycle depending on the buoyancy and viscosity of these liquids. In this study we demonstrate a major advance in our understanding of carbonate liquids by combining simulations and high pressure measurements on a carbonate glass, (K2CO3-MgCO3) to pressures in excess of 40 GPa, far higher than any previous in situ study. We show the clear formation of extended low-dimensional carbonate networks of close CO32– pairs and the emergence of a “three plus one” local coordination environment, producing an unexpected increase in viscosity with pressure. Although carbonate melts may still be buoyant in the lower mantle, an increased viscosity by at least three orders of magnitude will restrict the upward mobility, possibly resulting in entrainment by the down-going slab.},
doi = {10.1038/s41598-019-51306-6},
journal = {Scientific Reports},
issn = {2045-2322},
number = 1,
volume = 9,
place = {United States},
year = {2019},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Carbonatite Melts and Electrical Conductivity in the Asthenosphere
journal, November 2008


Contrasting sound velocity and intermediate-range structural order between polymerized and depolymerized silicate glasses under pressure
journal, April 2014


Carbonate Melts and Carbonatites
journal, January 2013

  • Jones, A. P.; Genge, M.; Carmody, L.
  • Reviews in Mineralogy and Geochemistry, Vol. 75, Issue 1
  • DOI: 10.2138/rmg.2013.75.10

13C MAS NMR: A method for studying CO2 speciation in glasses
journal, December 1991


Molecular-dynamics simulation of molten alkali carbonates
journal, October 1990


Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth's lower mantle
journal, August 2008

  • Oganov, Artem R.; Ono, Shigeaki; Ma, Yanming
  • Earth and Planetary Science Letters, Vol. 273, Issue 1-2
  • DOI: 10.1016/j.epsl.2008.06.005

Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion
journal, February 2016

  • Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe
  • Nature Chemistry, Vol. 8, Issue 5
  • DOI: 10.1038/nchem.2450

High-Pressure Transformation of SiO 2 Glass from a Tetrahedral to an Octahedral Network: A Joint Approach Using Neutron Diffraction and Molecular Dynamics
journal, September 2014


Electrical conductivity during incipient melting in the oceanic low-velocity zone
journal, April 2014

  • Sifré, David; Gardés, Emmanuel; Massuyeau, Malcolm
  • Nature, Vol. 509, Issue 7498
  • DOI: 10.1038/nature13245

Charge equilibration for molecular dynamics simulations
journal, April 1991

  • Rappe, Anthony K.; Goddard, William A.
  • The Journal of Physical Chemistry, Vol. 95, Issue 8
  • DOI: 10.1021/j100161a070

New density measurements on carbonate liquids and the partial molar volume of the CaCO 3 component
journal, December 2003


Glass Formation in Carbonate Systems
journal, March 1964


Structural roles of CO2 and [CO3]2− in fully polymerized sodium aluminosilicate melts and glasses
journal, February 1995


Molecular dynamics simulations of CaCO3 melts to mantle pressures and temperatures: implications for carbonatite magmas
journal, April 1995

  • Genge, Matthew J.; Price, G. David; Jones, Adrian P.
  • Earth and Planetary Science Letters, Vol. 131, Issue 3-4
  • DOI: 10.1016/0012-821X(95)00020-D

Solubility, speciation and dissolution mechanisms for CO2 in melts on the NaAlO2–SiO2 join
journal, November 1999


An infrared and Raman study of carbonate glasses: implications for the structure of carbonatite magmas
journal, March 1995


Tetrahedrally coordinated carbonates in Earth’s lower mantle
journal, February 2015

  • Boulard, Eglantine; Pan, Ding; Galli, Giulia
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7311

X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press
journal, July 2015

  • Kono, Yoshio; Kenney-Benson, Curtis; Shibazaki, Yuki
  • Review of Scientific Instruments, Vol. 86, Issue 7
  • DOI: 10.1063/1.4927227

First sharp diffraction peak in the fragile liquid Ca 0.4 K 0.6 ( N O 3 ) 1.4
journal, February 2000


Structural investigation of amorphous materials at high pressures using the diamond anvil cell
journal, June 2003

  • Shen, Guoyin; Prakapenka, Vitali B.; Rivers, Mark L.
  • Review of Scientific Instruments, Vol. 74, Issue 6
  • DOI: 10.1063/1.1574394

Structure and density of molten fayalite at high pressure
journal, October 2013


The speciation of carbon dioxide in sodium aluminosilicate glasses
journal, October 1985

  • Fine, Gerald; Stolper, Edward
  • Contributions to Mineralogy and Petrology, Vol. 91, Issue 2
  • DOI: 10.1007/BF00377759

Molecular dynamics of molten Li2CO3–K2CO3
journal, February 2008


Attempted Glass Formation in Pure KHSO4
journal, February 1984


High-pressure amorphous nitrogen
journal, July 2001

  • Gregoryanz, Eugene; Goncharov, Alexander F.; Hemley, Russell J.
  • Physical Review B, Vol. 64, Issue 5
  • DOI: 10.1103/PhysRevB.64.052103

Low-Dimensional Network Formation in Molten Sodium Carbonate
journal, April 2016

  • Wilding, Martin C.; Wilson, Mark; Alderman, Oliver L. G.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep24415

Formation of a Sulfate Glass
journal, June 1950


Slab melting as a barrier to deep carbon subduction
journal, January 2016

  • Thomson, Andrew R.; Walter, Michael J.; Kohn, Simon C.
  • Nature, Vol. 529, Issue 7584
  • DOI: 10.1038/nature16174

Partially collapsed cristobalite structure in the non molecular phase V in CO2
journal, March 2012

  • Santoro, M.; Gorelli, F. A.; Bini, R.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 14
  • DOI: 10.1073/pnas.1118791109

Structure, equation of state and transport properties of molten calcium carbonate (CaCO3) by atomistic simulations
journal, September 2014

  • Vuilleumier, Rodolphe; Seitsonen, Ari; Sator, Nicolas
  • Geochimica et Cosmochimica Acta, Vol. 141
  • DOI: 10.1016/j.gca.2014.06.037

Validating a polarizable model for the glass-forming liquid Ca0.4K0.6(NO3)1.4 by ab initio calculations
journal, September 2000

  • Ribeiro, Mauro C. C.; Almeida, Luiz C. J.
  • The Journal of Chemical Physics, Vol. 113, Issue 11
  • DOI: 10.1063/1.1289147

Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions
journal, January 1986

  • Mao, H. K.; Xu, J.; Bell, P. M.
  • Journal of Geophysical Research, Vol. 91, Issue B5, p. 4673-4676
  • DOI: 10.1029/JB091iB05p04673

Experimental determination of electrical conductivity during deformation of melt-bearing olivine aggregates: Implications for electrical anisotropy in the oceanic low velocity zone
journal, February 2011

  • Caricchi, Luca; Gaillard, Fabrice; Mecklenburgh, Julian
  • Earth and Planetary Science Letters, Vol. 302, Issue 1-2
  • DOI: 10.1016/j.epsl.2010.11.041

High pressure solid state chemistry of carbon dioxide
journal, January 2006

  • Santoro, M.; Gorelli, F. A.
  • Chemical Society Reviews, Vol. 35, Issue 10
  • DOI: 10.1039/b604306m

Carbonatites and Carbonatites and Carbonatites
journal, December 2005


Do carbonate liquids become denser than silicate liquids at pressure? Constraints from the fusion curve of K2CO3 to 3.2 GPa
journal, September 2006

  • Liu, Qiong; Tenner, Travis J.; Lange, Rebecca A.
  • Contributions to Mineralogy and Petrology, Vol. 153, Issue 1
  • DOI: 10.1007/s00410-006-0134-z

Ultralow viscosity of carbonate melts at high pressures
journal, October 2014

  • Kono, Yoshio; Kenney-Benson, Curtis; Hummer, Daniel
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6091

Amorphous silica-like carbon dioxide
journal, June 2006

  • Santoro, Mario; Gorelli, Federico A.; Bini, Roberto
  • Nature, Vol. 441, Issue 7095
  • DOI: 10.1038/nature04879

High-pressure experimental studies on geo-liquids using synchrotron radiation at the Advanced Photon Source
journal, December 2014


Carbonate magmas
journal, July 1993


Extrusive carbonatites: A brief review
journal, November 2005


Structure and Liquid Fragility in Sodium Carbonate
journal, January 2018

  • Wilson, Mark; Ribeiro, Mauro C. C.; Wilding, Martin C.
  • The Journal of Physical Chemistry A, Vol. 122, Issue 4
  • DOI: 10.1021/acs.jpca.7b10712

Silicon carbonate phase formed from carbon dioxide and silica under pressure
journal, April 2011

  • Santoro, M.; Gorelli, F.; Haines, J.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 19
  • DOI: 10.1073/pnas.1019691108

Density-driven structural transformations in B 2 O 3 glass
journal, July 2014


The System Potassium Carbonate—Magnesium Carbonate
journal, October 1966

  • Ragone, S. E.; Datta, R. K.; Roy, Della M.
  • The Journal of Physical Chemistry, Vol. 70, Issue 10
  • DOI: 10.1021/j100882a515

High-pressure transition of CaCO3
journal, July 2007

  • Ono, S.; Kikegawa, T.; Ohishi, Y.
  • American Mineralogist, Vol. 92, Issue 7
  • DOI: 10.2138/am.2007.2649

The compressibility of CaCO3–Li2CO3–Na2CO3–K2CO3 liquids: application to natrocarbonatite and CO2-bearing nephelinite liquids from Oldoinyo Lengai
journal, July 2015

  • O’Leary, Mary Catherine; Lange, Rebecca A.; Ai, Yuhui
  • Contributions to Mineralogy and Petrology, Vol. 170, Issue 1
  • DOI: 10.1007/s00410-015-1157-0

Structural change in molten basalt at deep mantle conditions
journal, November 2013

  • Sanloup, Chrystèle; Drewitt, James W. E.; Konôpková, Zuzana
  • Nature, Vol. 503, Issue 7474
  • DOI: 10.1038/nature12668

Ultrahigh-pressure polyamorphism in GeO 2 glass with coordination number >6
journal, March 2016

  • Kono, Yoshio; Kenney-Benson, Curtis; Ikuta, Daijo
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 13
  • DOI: 10.1073/pnas.1524304113

A novel carbon bonding environment in deep mantle high-pressure dolomite
journal, January 2018

  • Vennari, Cara E.; Williams, Quentin
  • American Mineralogist, Vol. 103, Issue 1
  • DOI: 10.2138/am-2018-6270

The structure of liquid alkali nitrates and nitrites
journal, January 2017

  • Wilding, Martin C.; Wilson, Mark; Ribeiro, Mauro C. C.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 32
  • DOI: 10.1039/C7CP03465B

Dynamical fluctuating charge force fields: Application to liquid water
journal, October 1994

  • Rick, Steven W.; Stuart, Steven J.; Berne, B. J.
  • The Journal of Chemical Physics, Vol. 101, Issue 7
  • DOI: 10.1063/1.468398

High-pressure forms of lithium sulphate: Structural determination and computer simulation
journal, August 2005


Constructing ab initio force fields for molecular dynamics simulations
journal, March 1998

  • Liu, Yi-Ping; Kim, Kyungsun; Berne, B. J.
  • The Journal of Chemical Physics, Vol. 108, Issue 12
  • DOI: 10.1063/1.475886

Nitrate glasses
journal, April 1971


Properties of molten CaCO3 at high pressure
journal, April 2018


In-situ measurement of viscosity and density of carbonate melts at high pressure
journal, September 1996

  • Dobson, David P.; Jones, Adrian P.; Rabe, Richard
  • Earth and Planetary Science Letters, Vol. 143, Issue 1-4
  • DOI: 10.1016/0012-821X(96)00139-2

Über einige Doppelcarbonate der Alkalien und Erdalkalien
journal, October 1929

  • Eitel, W.; Skaliks, W.
  • Zeitschrift für anorganische und allgemeine Chemie, Vol. 183, Issue 1
  • DOI: 10.1002/zaac.19291830119