skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Amorphous Lithium Lanthanum Titanate for Solid-State Microbatteries

Abstract

Lithium lanthanum titanate (LLTO) is a promising solid state electrolyte for solid state batteries due to its demonstrated high bulk ionic conductivity. However, crystalline LLTO has a relatively low grain boundary conductivity, limiting the overall material conductivity. In this work, we investigate amorphous LLTO (a-LLTO) thin films grown by pulsed laser deposition (PLD). By controlling the background pressure and temperature we are able to optimize the ionic conductivity to 3 × 10 -4 S/cm and electronic conductivity to 5 × 10 -11 S/cm. XRD, TEM, and STEM/EELS analysis confirm that the films are amorphous and indicate that oxygen background gas is necessary during the PLD process to decrease the oxygen vacancy concentration, decreasing the electrical conductivity. Amorphous LLTO is deposited onto high voltage LiNi 0.5Mn 1.5O 4 (LNMO) spinel cathode thin films and cycled up to 4.8 V vs. Li showing excellent capacity retention. These results demonstrate that a- LTO has the potential to be integrated into high voltage thin film batteries.

Authors:
 [1];  [1];  [2];  [1];  [1]
  1. Univ. of California, San Diego, CA (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Univ. of California, San Diego, CA (United States); Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1595351
Alternate Identifier(s):
OSTI ID: 1346755
Report Number(s):
BNL-113655-2017-JA
Journal ID: ISSN 0013-4651
Grant/Contract Number:  
SC0002357; SC0012704
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 164; Journal Issue: 1; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; lithium lanthanum titanate solid-state microbatteries; Center for Functional Nanomaterials; amorphous; lithium lanthanum titanate; pulsed laser deposition; solid state electrolyte; thin film battery

Citation Formats

Lee, Jungwoo Z., Wang, Ziying, Xin, Huolin L., Wynn, Thomas A., and Meng, Ying Shirley. Amorphous Lithium Lanthanum Titanate for Solid-State Microbatteries. United States: N. p., 2016. Web. doi:10.1149/2.0411701jes.
Lee, Jungwoo Z., Wang, Ziying, Xin, Huolin L., Wynn, Thomas A., & Meng, Ying Shirley. Amorphous Lithium Lanthanum Titanate for Solid-State Microbatteries. United States. doi:10.1149/2.0411701jes.
Lee, Jungwoo Z., Wang, Ziying, Xin, Huolin L., Wynn, Thomas A., and Meng, Ying Shirley. Fri . "Amorphous Lithium Lanthanum Titanate for Solid-State Microbatteries". United States. doi:10.1149/2.0411701jes. https://www.osti.gov/servlets/purl/1595351.
@article{osti_1595351,
title = {Amorphous Lithium Lanthanum Titanate for Solid-State Microbatteries},
author = {Lee, Jungwoo Z. and Wang, Ziying and Xin, Huolin L. and Wynn, Thomas A. and Meng, Ying Shirley},
abstractNote = {Lithium lanthanum titanate (LLTO) is a promising solid state electrolyte for solid state batteries due to its demonstrated high bulk ionic conductivity. However, crystalline LLTO has a relatively low grain boundary conductivity, limiting the overall material conductivity. In this work, we investigate amorphous LLTO (a-LLTO) thin films grown by pulsed laser deposition (PLD). By controlling the background pressure and temperature we are able to optimize the ionic conductivity to 3 × 10-4 S/cm and electronic conductivity to 5 × 10-11 S/cm. XRD, TEM, and STEM/EELS analysis confirm that the films are amorphous and indicate that oxygen background gas is necessary during the PLD process to decrease the oxygen vacancy concentration, decreasing the electrical conductivity. Amorphous LLTO is deposited onto high voltage LiNi0.5Mn1.5O4 (LNMO) spinel cathode thin films and cycled up to 4.8 V vs. Li showing excellent capacity retention. These results demonstrate that a- LTO has the potential to be integrated into high voltage thin film batteries.},
doi = {10.1149/2.0411701jes},
journal = {Journal of the Electrochemical Society},
issn = {0013-4651},
number = 1,
volume = 164,
place = {United States},
year = {2016},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Lithium ion secondary batteries; past 10 years and the future
journal, November 2001


A Reversible and Higher-Rate Li-O2 Battery
journal, July 2012


A composite of sulfur and polypyrrole–multi walled carbon combinatorial nanotube as cathode for Li/S battery
journal, May 2012


A High-Performance Polymer Tin Sulfur Lithium Ion Battery
journal, February 2010

  • Hassoun, Jusef; Scrosati, Bruno
  • Angewandte Chemie International Edition, Vol. 49, Issue 13, p. 2371-2374
  • DOI: 10.1002/anie.200907324

A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries
journal, January 2015


Surface and Interface Engineering of Electrode Materials for Lithium-Ion Batteries
journal, October 2014

  • Wang, Kai-Xue; Li, Xin-Hao; Chen, Jie-Sheng
  • Advanced Materials, Vol. 27, Issue 3
  • DOI: 10.1002/adma.201402962

Core-shell structured sulfur-polypyrrole composite cathodes for lithium-sulfur batteries
journal, January 2012

  • Fu, Yongzhu; Manthiram, Arumugam
  • RSC Advances, Vol. 2, Issue 14, p. 5927-5929
  • DOI: 10.1039/c2ra20393f

Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries
journal, November 2011

  • Elazari, Ran; Salitra, Gregory; Garsuch, Arnd
  • Advanced Materials, Vol. 23, Issue 47, p. 5641-5644
  • DOI: 10.1002/adma.201103274

Sulfur/Polythiophene with a Core/Shell Structure: Synthesis and Electrochemical Properties of the Cathode for Rechargeable Lithium Batteries
journal, March 2011

  • Wu, Feng; Chen, Junzheng; Chen, Renjie
  • The Journal of Physical Chemistry C, Vol. 115, Issue 13, p. 6057-6063
  • DOI: 10.1021/jp1114724

Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries
journal, January 2006


Olivine LiCoPO[sub 4] as 4.8 V Electrode Material for Lithium Batteries
journal, January 1999

  • Amine, K.
  • Electrochemical and Solid-State Letters, Vol. 3, Issue 4
  • DOI: 10.1149/1.1390994

Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells
journal, November 2011

  • Ji, Liwen; Rao, Mumin; Zheng, Haimei
  • Journal of the American Chemical Society, Vol. 133, Issue 46, p. 18522-18525
  • DOI: 10.1021/ja206955k

Sulfur-Impregnated Disordered Carbon Nanotubes Cathode for Lithium–Sulfur Batteries
journal, October 2011

  • Guo, Juchen; Xu, Yunhua; Wang, Chunsheng
  • Nano Letters, Vol. 11, Issue 10, p. 4288-4294
  • DOI: 10.1021/nl202297p

Sulfur@hollow polypyrrole sphere nanocomposites for rechargeable Li–S batteries
journal, January 2013

  • Dong, Zimin; Zhang, Jun; Zhao, Xuyang
  • RSC Advances, Vol. 3, Issue 47
  • DOI: 10.1039/c3ra45683h

Research progress in high voltage spinel LiNi0.5Mn1.5O4 material
journal, September 2010


Rechargeable Li 2 O 2 Electrode for Lithium Batteries
journal, February 2006

  • Ogasawara, Takeshi; Débart, Aurélie; Holzapfel, Michael
  • Journal of the American Chemical Society, Vol. 128, Issue 4
  • DOI: 10.1021/ja056811q

Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries
journal, October 2011

  • Zheng, Guangyuan; Yang, Yuan; Cha, Judy J.
  • Nano Letters, Vol. 11, Issue 10, p. 4462-4467
  • DOI: 10.1021/nl2027684

Fluoride phosphate Li2CoPO4F as a high-voltage cathode in Li-ion batteries
journal, August 2005


Ni3+/Ni2+ redox potential in LiNiPO4
journal, March 2005


Positive Electrode Materials for Li-Ion and Li-Batteries
journal, February 2010

  • Ellis, Brian L.; Lee, Kyu Tae; Nazar, Linda F.
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm902696j

Nano-wire networks of sulfur–polypyrrole composite cathode materials for rechargeable lithium batteries
journal, December 2008

  • Sun, Mingming; Zhang, Shichao; Jiang, Tao
  • Electrochemistry Communications, Vol. 10, Issue 12, p. 1819-1822
  • DOI: 10.1016/j.elecom.2008.09.012

Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating
journal, October 2011

  • Yang, Yuan; Yu, Guihua; Cha, Judy J.
  • ACS Nano, Vol. 5, Issue 11, p. 9187-9193
  • DOI: 10.1021/nn203436j

Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries
journal, October 2012

  • Xin, Sen; Gu, Lin; Zhao, Na-Hong
  • Journal of the American Chemical Society, Vol. 134, Issue 45
  • DOI: 10.1021/ja308170k

Lithium−Air Battery: Promise and Challenges
journal, June 2010

  • Girishkumar, G.; McCloskey, B.; Luntz, A. C.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 14
  • DOI: 10.1021/jz1005384

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries
journal, June 2006


A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries
journal, February 2008


    Works referencing / citing this record:

    Pulsed Laser Deposited Films for Microbatteries
    journal, June 2019


    Pulsed Laser Deposited Films for Microbatteries
    journal, June 2019