skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strain Effect in Palladium Nanostructures as Nanozymes

Journal Article · · Nano Letters

While various effects of physicochemical parameters (e.g., size, facet, composition, and internal structure) on the catalytic efficiency of nanozymes (i.e., nanoscale enzyme mimics) have been studied, the strain effect has never been reported and understood before. Herein, we demonstrate the strain effect in nanozymes by using Pd octahedra and icosahedra with peroxidase-like activities as a model system. Strained Pd icosahedra were found to display 2-fold higher peroxidase-like catalytic efficiency than unstrained Pd octahedra. Theoretical analysis suggests that tensile strain is more beneficial to OH radical (a key intermediate for the catalysis) generation than compressive strain. Pd icosahedra are more active than Pd octahedra because icosahedra amplify the surface strain field. As a proof-of-concept demonstration, the strained Pd icosahedra were applied to an immunoassay of biomarkers, outperforming both unstrained Pd octahedra and natural peroxidases. The findings in this research may serve as a strong foundation to guide the design of high-performance nanozymes.

Research Organization:
Louisiana State Univ., Baton Rouge, LA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Grant/Contract Number:
SC0018408
OSTI ID:
1594049
Alternate ID(s):
OSTI ID: 1656777
Journal Information:
Nano Letters, Vol. 20, Issue 1; ISSN 1530-6984
Publisher:
American Chemical SocietyCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 54 works
Citation information provided by
Web of Science