skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Memory effect and magnetocrystalline anisotropy impact on the surface magnetic domains of magnetite(001)

Abstract

The structure of magnetic domains, i.e. regions of uniform magnetization separated by domain walls, depends on the balance of competing interactions present in ferromagnetic (or ferrimagnetic) materials. When these interactions change then domain configurations also change as a result. Magnetite provides a good test bench to study these effects, as its magnetocrystalline anisotropy varies significantly with temperature. Using spin-polarized electron microscopy to map the micromagnetic domain structure in the (001) surface of a macroscopic magnetite crystal (~1 cm size) shows complex domain patterns with characteristic length-scales in the micrometer range and highly temperature dependent domain geometries. Although heating above the Curie temperature erases the domain patterns completely, cooling down reproduces domain patterns not only in terms of general characteristics: instead, complex microscopic domain geometries are reproduced in almost perfect fidelity between heating cycles. A possible explanation of the origin of the high-fidelity reproducibility is suggested to be a combination of the presence of hematite inclusions that lock bulk domains, together with the strong effect of the first order magnetocrystalline anisotropy which competes with the shape anisotropy to give rise to the observed complex patterns.

Authors:
 [1];  [2];  [1];  [3];  [3];  [2]; ORCiD logo [1]
  1. Spanish National Research Council (CSIC), Madrid (Spain)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Univ. Complutense, Madrid (Spain); Unidad Asociada IQFR(CSIC)-UCM, Madrid (Spain)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); MINECO
OSTI Identifier:
1592411
Grant/Contract Number:  
AC02-05CH11231; BES-2013-063396
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; electronic and spintronic devices; surfaces, interfaces and thin films

Citation Formats

Martín-García, Laura, Chen, Gong, Montaña, Yaiza, Mascaraque, Arantzazu, Pabón, Beatriz M., Schmid, Andreas K., and de la Figuera, Juan. Memory effect and magnetocrystalline anisotropy impact on the surface magnetic domains of magnetite(001). United States: N. p., 2018. Web. doi:10.1038/s41598-018-24160-1.
Martín-García, Laura, Chen, Gong, Montaña, Yaiza, Mascaraque, Arantzazu, Pabón, Beatriz M., Schmid, Andreas K., & de la Figuera, Juan. Memory effect and magnetocrystalline anisotropy impact on the surface magnetic domains of magnetite(001). United States. doi:10.1038/s41598-018-24160-1.
Martín-García, Laura, Chen, Gong, Montaña, Yaiza, Mascaraque, Arantzazu, Pabón, Beatriz M., Schmid, Andreas K., and de la Figuera, Juan. Mon . "Memory effect and magnetocrystalline anisotropy impact on the surface magnetic domains of magnetite(001)". United States. doi:10.1038/s41598-018-24160-1. https://www.osti.gov/servlets/purl/1592411.
@article{osti_1592411,
title = {Memory effect and magnetocrystalline anisotropy impact on the surface magnetic domains of magnetite(001)},
author = {Martín-García, Laura and Chen, Gong and Montaña, Yaiza and Mascaraque, Arantzazu and Pabón, Beatriz M. and Schmid, Andreas K. and de la Figuera, Juan},
abstractNote = {The structure of magnetic domains, i.e. regions of uniform magnetization separated by domain walls, depends on the balance of competing interactions present in ferromagnetic (or ferrimagnetic) materials. When these interactions change then domain configurations also change as a result. Magnetite provides a good test bench to study these effects, as its magnetocrystalline anisotropy varies significantly with temperature. Using spin-polarized electron microscopy to map the micromagnetic domain structure in the (001) surface of a macroscopic magnetite crystal (~1 cm size) shows complex domain patterns with characteristic length-scales in the micrometer range and highly temperature dependent domain geometries. Although heating above the Curie temperature erases the domain patterns completely, cooling down reproduces domain patterns not only in terms of general characteristics: instead, complex microscopic domain geometries are reproduced in almost perfect fidelity between heating cycles. A possible explanation of the origin of the high-fidelity reproducibility is suggested to be a combination of the presence of hematite inclusions that lock bulk domains, together with the strong effect of the first order magnetocrystalline anisotropy which competes with the shape anisotropy to give rise to the observed complex patterns.},
doi = {10.1038/s41598-018-24160-1},
journal = {Scientific Reports},
issn = {2045-2322},
number = 1,
volume = 8,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Origin of the Anomalous Magnetic Behavior in Single Crystal Fe 3 O 4 Films
journal, December 1997


The design and verification of MuMax3
journal, October 2014

  • Vansteenkiste, Arne; Leliaert, Jonathan; Dvornik, Mykola
  • AIP Advances, Vol. 4, Issue 10
  • DOI: 10.1063/1.4899186

Magnetic imaging with spin-polarized low-energy electron microscopy
journal, April 2010

  • Rougemaille, N.; Schmid, A. K.
  • The European Physical Journal Applied Physics, Vol. 50, Issue 2
  • DOI: 10.1051/epjap/2010048

Oxidation of Magnetite(100) to Hematite Observed by in Situ Spectroscopy and Microscopy
journal, August 2014

  • McCarty, Kevin F.; Monti, Matteo; Nie, Shu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 34
  • DOI: 10.1021/jp5037603

From epitaxial growth of ferrite thin films to spin-polarized tunnelling
journal, March 2013


Real-space imaging of the Verwey transition at the (100) surface of magnetite
journal, October 2013


Spin and orbital magnetic moment of reconstructed 2 × 2 R 45 magnetite(001)
journal, January 2015

  • Martín-García, Laura; Gargallo-Caballero, Raquel; Monti, Matteo
  • Physical Review B, Vol. 91, Issue 2
  • DOI: 10.1103/PhysRevB.91.020408

Spiral-like continuous spin-reorientation transition of Fe/Ni bilayers on Cu(100)
journal, June 2004


Low-temperature properties of a single crystal of magnetite oriented along principal magnetic axes
journal, January 1999


Insight into Magnetite’s Redox Catalysis from Observing Surface Morphology during Oxidation
journal, June 2013

  • Nie, Shu; Starodub, Elena; Monti, Matteo
  • Journal of the American Chemical Society, Vol. 135, Issue 27
  • DOI: 10.1021/ja402599t

Mechanism of Oxidation of Magnetite to γ-Fe2O3
journal, March 1968

  • Gallagher, K. J.; Feitknecht, W.; Mannweiler, U.
  • Nature, Vol. 217, Issue 5134
  • DOI: 10.1038/2171118a0

A compact electron‐spin‐polarization manipulator
journal, April 1995

  • Duden, T.; Bauer, E.
  • Review of Scientific Instruments, Vol. 66, Issue 4
  • DOI: 10.1063/1.1145569

Direct imaging of nanoscale magnetic interactions in minerals
journal, December 2002

  • Harrison, R. J.; Dunin-Borkowski, R. E.; Putnis, A.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 26
  • DOI: 10.1073/pnas.262514499

Imaging Spin-Reorientation Transitions in Consecutive Atomic Co Layers on Ru(0001)
journal, April 2006


Physical Theory of Ferromagnetic Domains
journal, October 1949


Room temperature in-plane ⟨100⟩ magnetic easy axis for Fe 3 O 4 /SrTiO 3 (001):Nb grown by infrared pulsed laser deposition
journal, December 2013

  • Monti, Matteo; Sanz, Mikel; Oujja, Mohamed
  • Journal of Applied Physics, Vol. 114, Issue 22
  • DOI: 10.1063/1.4837656