skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Making a Splash in Homogeneous CO2 Hydrogenation: Elucidating the Impact of Solvent on Catalytic Mechanisms

Abstract

Molecular catalysts for hydrogenation of CO2 are widely studied as a means of chemical hydrogen storage. Catalysts are traditionally designed from the perspective of controlling the ligands bound to the metal. In recent years, studies have shown that the solvent can also play a key role in the mechanism of CO2 hydrogenation. A prominent example is the impact of the solvent on the thermodynamic hydride donor ability, or hydricity, of metal hydride complexes reletive to the hydride acceptor ability of CO2. In some cases, simply changing from an organic solvent to water can reverse the direction of hydride transfer between a metal hydride and CO2. Additionally, the solvent can impact catalysis by converting CO2 into carbonate species, as well as activate intermediate products for hydrogenation to more reduced products. By understanding the substrate and product speciation, as well as the reactivity of the catalyst towards the substrate, the solvent can be used as a central design component for the rational development of new catalytic systems. This research was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for themore » U.S. Department of Energy.« less

Authors:
ORCiD logo [1];  [1]
  1. BATTELLE (PACIFIC NW LAB)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1578148
Report Number(s):
PNNL-SA-133770
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Chemistry - A European Journal
Additional Journal Information:
Journal Volume: 24; Journal Issue: 64
Country of Publication:
United States
Language:
English
Subject:
carbon dioxide, homogeneous catalysis, solvent effect, Hydricity

Citation Formats

Wiedner, Eric S., and Linehan, John C. Making a Splash in Homogeneous CO2 Hydrogenation: Elucidating the Impact of Solvent on Catalytic Mechanisms. United States: N. p., 2018. Web. doi:10.1002/chem.201801759.
Wiedner, Eric S., & Linehan, John C. Making a Splash in Homogeneous CO2 Hydrogenation: Elucidating the Impact of Solvent on Catalytic Mechanisms. United States. doi:10.1002/chem.201801759.
Wiedner, Eric S., and Linehan, John C. Fri . "Making a Splash in Homogeneous CO2 Hydrogenation: Elucidating the Impact of Solvent on Catalytic Mechanisms". United States. doi:10.1002/chem.201801759.
@article{osti_1578148,
title = {Making a Splash in Homogeneous CO2 Hydrogenation: Elucidating the Impact of Solvent on Catalytic Mechanisms},
author = {Wiedner, Eric S. and Linehan, John C.},
abstractNote = {Molecular catalysts for hydrogenation of CO2 are widely studied as a means of chemical hydrogen storage. Catalysts are traditionally designed from the perspective of controlling the ligands bound to the metal. In recent years, studies have shown that the solvent can also play a key role in the mechanism of CO2 hydrogenation. A prominent example is the impact of the solvent on the thermodynamic hydride donor ability, or hydricity, of metal hydride complexes reletive to the hydride acceptor ability of CO2. In some cases, simply changing from an organic solvent to water can reverse the direction of hydride transfer between a metal hydride and CO2. Additionally, the solvent can impact catalysis by converting CO2 into carbonate species, as well as activate intermediate products for hydrogenation to more reduced products. By understanding the substrate and product speciation, as well as the reactivity of the catalyst towards the substrate, the solvent can be used as a central design component for the rational development of new catalytic systems. This research was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.},
doi = {10.1002/chem.201801759},
journal = {Chemistry - A European Journal},
number = 64,
volume = 24,
place = {United States},
year = {2018},
month = {11}
}

Works referenced in this record:

Formic Acid as a Hydrogen Energy Carrier
journal, December 2016


Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds
journal, November 2010

  • Cook, Timothy R.; Dogutan, Dilek K.; Reece, Steven Y.
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr100246c

CO 2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO 2 Reduction
journal, August 2015


Homogeneous Catalysis for Sustainable Hydrogen Storage in Formic Acid and Alcohols
journal, October 2017


Mechanistic Studies on the Reversible Hydrogenation of Carbon Dioxide Catalyzed by an Ir-PNP Complex
journal, December 2011

  • Tanaka, Ryo; Yamashita, Makoto; Chung, Lung Wa
  • Organometallics, Vol. 30, Issue 24
  • DOI: 10.1021/om2010172

Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
journal, March 2012

  • Hull, Jonathan F.; Himeda, Yuichiro; Wang, Wan-Hui
  • Nature Chemistry, Vol. 4, Issue 5, p. 383-388
  • DOI: 10.1038/nchem.1295

CO 2 Hydrogenation Catalyzed by Iridium Complexes with a Proton-Responsive Ligand
journal, February 2015

  • Onishi, Naoya; Xu, Shaoan; Manaka, Yuichi
  • Inorganic Chemistry, Vol. 54, Issue 11
  • DOI: 10.1021/ic502904q

Mechanistic Insight through Factors Controlling Effective Hydrogenation of CO 2 Catalyzed by Bioinspired Proton-Responsive Iridium(III) Complexes
journal, April 2013

  • Wang, Wan-Hui; Muckerman, James T.; Fujita, Etsuko
  • ACS Catalysis, Vol. 3, Issue 5
  • DOI: 10.1021/cs400172j

Catalytic Hydrogenation of CO 2 to Formates by a Lutidine-Derived Ru–CNC Pincer Complex: Theoretical Insight into the Unrealized Potential
journal, January 2015

  • Filonenko, Georgy A.; Smykowski, Daniel; Szyja, Bartłomiej M.
  • ACS Catalysis, Vol. 5, Issue 2
  • DOI: 10.1021/cs501990c

Computational Design of Cobalt Catalysts for Hydrogenation of Carbon Dioxide and Dehydrogenation of Formic Acid
journal, November 2016


Molecular Cobalt Complexes with Pendant Amines for Selective Electrocatalytic Reduction of Carbon Dioxide to Formic Acid
journal, March 2017

  • Roy, Souvik; Sharma, Bhaskar; Pécaut, Jacques
  • Journal of the American Chemical Society, Vol. 139, Issue 10
  • DOI: 10.1021/jacs.6b11474

A Computational Investigation of the Insertion of Carbon Dioxide into Four- and Five-Coordinate Iridium Hydrides
journal, May 2013

  • Bernskoetter, Wesley H.; Hazari, Nilay
  • European Journal of Inorganic Chemistry, Vol. 2013, Issue 22-23
  • DOI: 10.1002/ejic.201300170

Secondary Coordination Sphere Interactions Facilitate the Insertion Step in an Iridium(III) CO 2 Reduction Catalyst
journal, June 2011

  • Schmeier, Timothy J.; Dobereiner, Graham E.; Crabtree, Robert H.
  • Journal of the American Chemical Society, Vol. 133, Issue 24
  • DOI: 10.1021/ja2035514

Experimental and Theoretical Study of CO 2 Insertion into Ruthenium Hydride Complexes
journal, February 2016


Catalytic Fixation of Carbon Dioxide to Formic acid by Transition-Metal Complexes Under mild Conditions
journal, August 1976

  • Inoue, Yoshio; Izumida, Hitoshi; Sasaki, Yoshiyuki
  • Chemistry Letters, Vol. 5, Issue 8
  • DOI: 10.1246/cl.1976.863

Thermodynamic Hydricity of Transition Metal Hydrides
journal, June 2016


Hydricity of Transition-Metal Hydrides: Thermodynamic Considerations for CO 2 Reduction
journal, January 2018


Thermodynamic and Kinetic Hydricity of Ruthenium(II) Hydride Complexes
journal, September 2012

  • Matsubara, Yasuo; Fujita, Etsuko; Doherty, Mark D.
  • Journal of the American Chemical Society, Vol. 134, Issue 38
  • DOI: 10.1021/ja302937q

Hydricities of d 6 Metal Hydride Complexes in Water
journal, March 2009

  • Creutz, Carol; Chou, Mei H.
  • Journal of the American Chemical Society, Vol. 131, Issue 8
  • DOI: 10.1021/ja809724s

Predicting the reactivity of hydride donors in water: thermodynamic constants for hydrogen
journal, January 2015

  • Connelly, Samantha J.; Wiedner, Eric S.; Appel, Aaron M.
  • Dalton Transactions, Vol. 44, Issue 13
  • DOI: 10.1039/C4DT03841J

An Iron Electrocatalyst for Selective Reduction of CO 2 to Formate in Water: Including Thermochemical Insights
journal, November 2015


Hydrogenation of CO 2 in Water Using a Bis(diphosphine) Ni–H Complex
journal, March 2017

  • Burgess, Samantha A.; Kendall, Alexander J.; Tyler, David R.
  • ACS Catalysis, Vol. 7, Issue 4
  • DOI: 10.1021/acscatal.7b00350

Solvent influence on the thermodynamics for hydride transfer from bis(diphosphine) complexes of nickel
journal, January 2016

  • Connelly Robinson, Samantha J.; Zall, Christopher M.; Miller, Deanna L.
  • Dalton Transactions, Vol. 45, Issue 24
  • DOI: 10.1039/C6DT00309E

CO 2 reduction or HCO 2 oxidation? Solvent-dependent thermochemistry of a nickel hydride complex
journal, January 2017

  • Ceballos, Bianca M.; Tsay, Charlene; Yang, Jenny Y.
  • Chemical Communications, Vol. 53, Issue 53
  • DOI: 10.1039/C7CC02511D

Changing the Mechanism for CO 2 Hydrogenation Using Solvent-Dependent Thermodynamics
journal, October 2017

  • Burgess, Samantha A.; Appel, Aaron M.; Linehan, John C.
  • Angewandte Chemie International Edition, Vol. 56, Issue 47
  • DOI: 10.1002/anie.201709319

Changing the Mechanism for CO 2 Hydrogenation Using Solvent-Dependent Thermodynamics
journal, October 2017

  • Burgess, Samantha A.; Appel, Aaron M.; Linehan, John C.
  • Angewandte Chemie, Vol. 129, Issue 47
  • DOI: 10.1002/ange.201709319

Directing the Reactivity of [HFe 4 N(CO) 12 ] toward H + or CO 2 Reduction by Understanding the Electrocatalytic Mechanism
journal, November 2011

  • Rail, M. Diego; Berben, Louise A.
  • Journal of the American Chemical Society, Vol. 133, Issue 46
  • DOI: 10.1021/ja208312t

Considering a Possible Role for [H-Fe 4 N(CO) 12 ] 2– in Selective Electrocatalytic CO 2 Reduction to Formate by [Fe 4 N(CO) 12 ]
journal, January 2018


A Cobalt Hydride Catalyst for the Hydrogenation of CO 2 : Pathways for Catalysis and Deactivation
journal, September 2014

  • Jeletic, Matthew S.; Helm, Monte L.; Hulley, Elliott B.
  • ACS Catalysis, Vol. 4, Issue 10
  • DOI: 10.1021/cs5009927

A Cobalt-Based Catalyst for the Hydrogenation of CO 2 under Ambient Conditions
journal, July 2013

  • Jeletic, Matthew S.; Mock, Michael T.; Appel, Aaron M.
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja406601v

Solvation Effects on Transition Metal Hydricity
journal, November 2015

  • Tsay, Charlene; Livesay, Brooke N.; Ruelas, Samantha
  • Journal of the American Chemical Society, Vol. 137, Issue 44
  • DOI: 10.1021/jacs.5b07777

Synthesis and properties of [Ru(tpy)(4,4′-X2bpy)H]+ (tpy=2,2′:6′,2″-terpyridine, bpy=2,2′-bipyridine, X=H and MeO), and their reactions with CO2
journal, March 2000


The acceptor number ? A quantitative empirical parameter for the electrophilic properties of solvents
journal, January 1975

  • Mayer, Ulrich; Gutmann, Viktor; Gerger, Wolfgang
  • Monatshefte f�r Chemie, Vol. 106, Issue 6
  • DOI: 10.1007/BF00913599

Hydrogenative Carbon Dioxide Reduction Catalyzed by Mononuclear Ruthenium Polypyridyl Complexes: Discerning between Electronic and Steric Effects
journal, August 2017


Understanding the Relationship Between Kinetics and Thermodynamics in CO 2 Hydrogenation Catalysis
journal, August 2017


Bicarbonate Hydrogenation Catalyzed by Iron: How the Choice of Solvent Can Reverse the Reaction
journal, April 2016


Synthesis of Imidazolium-Tethered Ruthenium(II)-Arene Complexes and Their Application in Biphasic Catalysis
journal, January 2006

  • Geldbach, Tilmann J.; Laurenczy, Gábor; Scopelliti, Rosario
  • Organometallics, Vol. 25, Issue 3
  • DOI: 10.1021/om050849u

Homogeneous hydrogenation of carbon dioxide and bicarbonate in aqueous solution catalyzed by water-soluble ruthenium(II) phosphine complexes
journal, November 2003


Ruthenium-Catalyzed Hydrogenation of Bicarbonate in Water
journal, July 2010

  • Federsel, Christopher; Jackstell, Ralf; Boddien, Albert
  • ChemSusChem, Vol. 3, Issue 9
  • DOI: 10.1002/cssc.201000151

A Well-Defined Iron Catalyst for the Reduction of Bicarbonates and Carbon Dioxide to Formates, Alkyl Formates, and Formamides
journal, November 2010

  • Federsel, Christopher; Boddien, Albert; Jackstell, Ralf
  • Angewandte Chemie International Edition, Vol. 49, Issue 50
  • DOI: 10.1002/anie.201004263

Ein wohldefinierter Eisenkatalysator für die Reduktion von Bicarbonaten und Kohlendioxid zu Formiaten, Alkylformiaten und Formamiden
journal, November 2010

  • Federsel, Christopher; Boddien, Albert; Jackstell, Ralf
  • Angewandte Chemie, Vol. 122, Issue 50
  • DOI: 10.1002/ange.201004263

Catalytic Hydrogenation of Carbon Dioxide and Bicarbonates with a Well-Defined Cobalt Dihydrogen Complex
journal, December 2011

  • Federsel, Christopher; Ziebart, Carolin; Jackstell, Ralf
  • Chemistry - A European Journal, Vol. 18, Issue 1
  • DOI: 10.1002/chem.201101343

Amine-Free Reversible Hydrogen Storage in Formate Salts Catalyzed by Ruthenium Pincer Complex without pH Control or Solvent Change
journal, March 2015

  • Kothandaraman, Jotheeswari; Czaun, Miklos; Goeppert, Alain
  • ChemSusChem, Vol. 8, Issue 8
  • DOI: 10.1002/cssc.201403458

New Ru( ii ) N′NN′-type pincer complexes: synthesis, characterization and the catalytic hydrogenation of CO 2 or bicarbonates to formate salts
journal, January 2017

  • Dai, Zengjin; Luo, Qi; Cong, Hengjiang
  • New Journal of Chemistry, Vol. 41, Issue 8
  • DOI: 10.1039/C6NJ03855G

Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO
journal, July 2011

  • Balaraman, Ekambaram; Gunanathan, Chidambaram; Zhang, Jing
  • Nature Chemistry, Vol. 3, Issue 8
  • DOI: 10.1038/nchem.1089

Combining Low-Pressure CO 2 Capture and Hydrogenation To Form Methanol
journal, March 2015

  • Khusnutdinova, Julia R.; Garg, Jai Anand; Milstein, David
  • ACS Catalysis, Vol. 5, Issue 4
  • DOI: 10.1021/acscatal.5b00194

Tandem Amine and Ruthenium-Catalyzed Hydrogenation of CO 2 to Methanol
journal, January 2015

  • Rezayee, Nomaan M.; Huff, Chelsea A.; Sanford, Melanie S.
  • Journal of the American Chemical Society, Vol. 137, Issue 3
  • DOI: 10.1021/ja511329m

CO 2 capture by amines in aqueous media and its subsequent conversion to formate with reusable ruthenium and iron catalysts
journal, January 2016

  • Kothandaraman, Jotheeswari; Goeppert, Alain; Czaun, Miklos
  • Green Chemistry, Vol. 18, Issue 21
  • DOI: 10.1039/C6GC01165A

Carbon dioxide-to-methanol single-pot conversion using a C-scorpionate iron( ii ) catalyst
journal, January 2017

  • Ribeiro, A. P. C.; Martins, L. M. D. R. S.; Pombeiro, A. J. L.
  • Green Chemistry, Vol. 19, Issue 20
  • DOI: 10.1039/C7GC01993A

Integrative CO 2 Capture and Hydrogenation to Methanol with Reusable Catalyst and Amine: Toward a Carbon Neutral Methanol Economy
journal, January 2018

  • Kar, Sayan; Sen, Raktim; Goeppert, Alain
  • Journal of the American Chemical Society, Vol. 140, Issue 5
  • DOI: 10.1021/jacs.7b12183

Homogeneous Hydrogenation of CO 2 to Methyl Formate Utilizing Switchable Ionic Liquids
journal, August 2014

  • Yadav, Mahendra; Linehan, John C.; Karkamkar, Abhijeet J.
  • Inorganic Chemistry, Vol. 53, Issue 18
  • DOI: 10.1021/ic501378w

The steps of activating a prospective CO 2 hydrogenation catalyst with combined CO 2 capture and reduction
journal, January 2016

  • Lao, D. B.; Galan, B. R.; Linehan, J. C.
  • Green Chemistry, Vol. 18, Issue 18
  • DOI: 10.1039/C6GC01800A

Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media
journal, June 2014

  • Moret, Séverine; Dyson, Paul J.; Laurenczy, Gábor
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5017

Calorimetric and spectroscopic studies on solvation energetics for H 2 storage in the CO 2 /HCOOH system
journal, January 2016

  • Fink, Cornel; Katsyuba, Sergey; Laurenczy, Gabor
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 16
  • DOI: 10.1039/C5CP06996C

Solvent effects on the reactivities of organometallic compounds
journal, February 1976


Selective CO 2 Hydrogenation to Formic Acid with Multifunctional Ionic Liquids
journal, January 2018


Cascade Catalysis for the Homogeneous Hydrogenation of CO 2 to Methanol
journal, November 2011

  • Huff, Chelsea A.; Sanford, Melanie S.
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja208760j

Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium–Triphos catalyst: from mechanistic investigations to multiphase catalysis
journal, January 2015

  • Wesselbaum, Sebastian; Moha, Verena; Meuresch, Markus
  • Chemical Science, Vol. 6, Issue 1
  • DOI: 10.1039/C4SC02087A

Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium-Phosphine Catalyst
journal, June 2012

  • Wesselbaum, Sebastian; vom Stein, Thorsten; Klankermayer, Jürgen
  • Angewandte Chemie International Edition, Vol. 51, Issue 30
  • DOI: 10.1002/anie.201202320

Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium-Phosphine Catalyst
journal, June 2012

  • Wesselbaum, Sebastian; vom Stein, Thorsten; Klankermayer, Jürgen
  • Angewandte Chemie, Vol. 124, Issue 30
  • DOI: 10.1002/ange.201202320

Low-Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst
journal, January 2017

  • Schneidewind, Jacob; Adam, Rosa; Baumann, Wolfgang
  • Angewandte Chemie International Edition, Vol. 56, Issue 7
  • DOI: 10.1002/anie.201609077

Low-Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst
journal, January 2017

  • Schneidewind, Jacob; Adam, Rosa; Baumann, Wolfgang
  • Angewandte Chemie, Vol. 129, Issue 7
  • DOI: 10.1002/ange.201609077

Carbon Dioxide to Methanol: The Aqueous Catalytic Way at Room Temperature
journal, September 2016

  • Sordakis, Katerina; Tsurusaki, Akihiro; Iguchi, Masayuki
  • Chemistry - A European Journal, Vol. 22, Issue 44
  • DOI: 10.1002/chem.201603407

Investigation of Hydrogenation of Formic Acid to Methanol using H 2 or Formic Acid as a Hydrogen Source
journal, January 2017


Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K
journal, January 1989

  • Bratsch, Steven G.
  • Journal of Physical and Chemical Reference Data, Vol. 18, Issue 1
  • DOI: 10.1063/1.555839

Angenäherte, spektrographische Bestimmung der Hydratationsgleichgewichtskonstanten wässriger Formaldehydlösungen
journal, October 1947


603. Kinetics of the aldol condensation of acetaldehyde
journal, January 1960


Basicity of the Amide Bond 1,2
journal, December 1955

  • Goldfarb, A. R.; Mele, A.; Gutstein, N.
  • Journal of the American Chemical Society, Vol. 77, Issue 23
  • DOI: 10.1021/ja01628a031

Aqueous Hydricity of Late Metal Catalysts as a Continuum Tuned by Ligands and the Medium
journal, February 2016

  • Pitman, Catherine L.; Brereton, Kelsey R.; Miller, Alexander J. M.
  • Journal of the American Chemical Society, Vol. 138, Issue 7
  • DOI: 10.1021/jacs.5b12363