skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Li-rich Li[Li1/6Fe1/6Ni1/6Mn1/2]O2 (LFNMO) Cathodes: Atomic Scale Insight on the Mechanisms of Cycling Decay and of the Improvement due to Cobalt Phosphate Surface Modification

Abstract

Lithium-rich Li[Li1/6Fe1/6Ni1/6Mn1/2]O2(0.4Li2MnO3-0.6LiFe1/3Ni1/3Mn1/3O2, LFNMO) is a new member of the xLi2MnO3·(1-x)LiMO2 family of high capacity - high voltage LIB cathodes. Unfortunately, it suffers from the severe degradation during cycling both in terms of reversible capacity and operating voltage. We are the first to document the corresponding degradation occurring in LFNMO at an atomic scale using aberration- corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) , as well as tracing the elemental crossover to the Li metal anode using XPS. We also demonstrate that a phosphate coating significantly boosts LFNMO cycling stability and rate capability. Due to cycling, the unmodified LFNMO undergoes extensive elemental dissolution (especially Mn) and O loss, forming Kirkendall-type voids. The associated structural degradation is from the as-synthesized R-3m layered structure to a disordered rock-salt phase. Prior to cycling, the phosphate coating shares the crystallography of the parent material. During cycling, a 2-3 nm thick disordered Co-based rock-salt structure is formed on the Mod-LFNMO surface, while the bulk material retains R-3m crystallography. Electrochemical impedance spectroscopy (EIS) analysis highlights how the phosphide treatment stabilizes the charge transfer resistance (RCT), the CEI resistance (RCEI), and the lithium ion diffusion coefficient (DLi). XPS analysis demonstrates that the coating also reduces themore » amount of cross-over Mn, Fe and especially Ni deposited on the Li metal anode, which is expected to lead to a more stable SEI layer during cycling. These combined cathode - anode findings significantly advance the microstructural design principles for next generation Li-rich cathode materials and coatings.« less

Authors:
 [1];  [1];  [2];  [2];  [1];  [1];  [1];  [3];  [4];  [4];  [3]; ORCiD logo [3];  [5]
  1. Southwest Petroleum University
  2. Clarkson University
  3. BATTELLE (PACIFIC NW LAB)
  4. Chinese Academy of Sciences
  5. NingDe Amperex Technology Limited
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1578064
Report Number(s):
PNNL-SA-136858
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Small
Additional Journal Information:
Journal Volume: 14; Journal Issue: 40
Country of Publication:
United States
Language:
English
Subject:
: high voltage cathode, Li - and Mn - rich cathode, capacity degradation mechanism, phosphate coating, cross over

Citation Formats

Li, Xing, Zhang, Kangjia, Mitlin, David, Paek, Eunsu, Wang, Mingshan, Fei, Jiang, Huang, Yun, Yang, Zhenzhong, Gong, Yue, Gu, Lin, Zhao, Wengao, Du, Yingge, and Zheng, Jianming. Li-rich Li[Li1/6Fe1/6Ni1/6Mn1/2]O2 (LFNMO) Cathodes: Atomic Scale Insight on the Mechanisms of Cycling Decay and of the Improvement due to Cobalt Phosphate Surface Modification. United States: N. p., 2018. Web. doi:10.1002/smll.201802570.
Li, Xing, Zhang, Kangjia, Mitlin, David, Paek, Eunsu, Wang, Mingshan, Fei, Jiang, Huang, Yun, Yang, Zhenzhong, Gong, Yue, Gu, Lin, Zhao, Wengao, Du, Yingge, & Zheng, Jianming. Li-rich Li[Li1/6Fe1/6Ni1/6Mn1/2]O2 (LFNMO) Cathodes: Atomic Scale Insight on the Mechanisms of Cycling Decay and of the Improvement due to Cobalt Phosphate Surface Modification. United States. doi:10.1002/smll.201802570.
Li, Xing, Zhang, Kangjia, Mitlin, David, Paek, Eunsu, Wang, Mingshan, Fei, Jiang, Huang, Yun, Yang, Zhenzhong, Gong, Yue, Gu, Lin, Zhao, Wengao, Du, Yingge, and Zheng, Jianming. Thu . "Li-rich Li[Li1/6Fe1/6Ni1/6Mn1/2]O2 (LFNMO) Cathodes: Atomic Scale Insight on the Mechanisms of Cycling Decay and of the Improvement due to Cobalt Phosphate Surface Modification". United States. doi:10.1002/smll.201802570.
@article{osti_1578064,
title = {Li-rich Li[Li1/6Fe1/6Ni1/6Mn1/2]O2 (LFNMO) Cathodes: Atomic Scale Insight on the Mechanisms of Cycling Decay and of the Improvement due to Cobalt Phosphate Surface Modification},
author = {Li, Xing and Zhang, Kangjia and Mitlin, David and Paek, Eunsu and Wang, Mingshan and Fei, Jiang and Huang, Yun and Yang, Zhenzhong and Gong, Yue and Gu, Lin and Zhao, Wengao and Du, Yingge and Zheng, Jianming},
abstractNote = {Lithium-rich Li[Li1/6Fe1/6Ni1/6Mn1/2]O2(0.4Li2MnO3-0.6LiFe1/3Ni1/3Mn1/3O2, LFNMO) is a new member of the xLi2MnO3·(1-x)LiMO2 family of high capacity - high voltage LIB cathodes. Unfortunately, it suffers from the severe degradation during cycling both in terms of reversible capacity and operating voltage. We are the first to document the corresponding degradation occurring in LFNMO at an atomic scale using aberration- corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) , as well as tracing the elemental crossover to the Li metal anode using XPS. We also demonstrate that a phosphate coating significantly boosts LFNMO cycling stability and rate capability. Due to cycling, the unmodified LFNMO undergoes extensive elemental dissolution (especially Mn) and O loss, forming Kirkendall-type voids. The associated structural degradation is from the as-synthesized R-3m layered structure to a disordered rock-salt phase. Prior to cycling, the phosphate coating shares the crystallography of the parent material. During cycling, a 2-3 nm thick disordered Co-based rock-salt structure is formed on the Mod-LFNMO surface, while the bulk material retains R-3m crystallography. Electrochemical impedance spectroscopy (EIS) analysis highlights how the phosphide treatment stabilizes the charge transfer resistance (RCT), the CEI resistance (RCEI), and the lithium ion diffusion coefficient (DLi). XPS analysis demonstrates that the coating also reduces the amount of cross-over Mn, Fe and especially Ni deposited on the Li metal anode, which is expected to lead to a more stable SEI layer during cycling. These combined cathode - anode findings significantly advance the microstructural design principles for next generation Li-rich cathode materials and coatings.},
doi = {10.1002/smll.201802570},
journal = {Small},
number = 40,
volume = 14,
place = {United States},
year = {2018},
month = {10}
}

Works referenced in this record:

Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi 0.8 Co 0.1 Mn 0.1 O 2
journal, January 2018

  • Li, Xing; Zhang, Kangjia; Wang, MingShan
  • Sustainable Energy & Fuels, Vol. 2, Issue 2
  • DOI: 10.1039/C7SE00513J

Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries
journal, January 2016

  • Hy, Sunny; Liu, Haodong; Zhang, Minghao
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C5EE03573B

Ionic Liquid Redox Catholyte for High Energy Efficiency, Low-Cost Energy Storage
journal, April 2015

  • Xue, Leigang; Tucker, Telpriore G.; Angell, C. Austen
  • Advanced Energy Materials, Vol. 5, Issue 12
  • DOI: 10.1002/aenm.201500271

Understanding the Rate Capability of High-Energy-Density Li-Rich Layered Li 1.2 Ni 0.15 Co 0.1 Mn 0.55 O 2 Cathode Materials
journal, December 2013


Optimization of Ni2+/Ni3+ ratio in layered Li(Ni,Mn,Co)O2 cathodes for better electrochemistry
journal, December 2007


Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives
journal, October 2015

  • Manthiram, Arumugam; Knight, James C.; Myung, Seung-Taek
  • Advanced Energy Materials, Vol. 6, Issue 1
  • DOI: 10.1002/aenm.201501010

Research Progress on Negative Electrodes for Practical Li-Ion Batteries: Beyond Carbonaceous Anodes
journal, April 2015

  • Aravindan, Vanchiappan; Lee, Yun-Sung; Madhavi, Srinivasan
  • Advanced Energy Materials, Vol. 5, Issue 13
  • DOI: 10.1002/aenm.201402225

Improved rate capability of a LiNi 1/3 Co 1/3 Mn 1/3 O 2 /CNT/graphene hybrid material for Li-ion batteries
journal, January 2017

  • Li, Xing; Zhao, Xing; Wang, Ming-Shan
  • RSC Advances, Vol. 7, Issue 39
  • DOI: 10.1039/C7RA03438E

Synthesis and Characterization of High-Energy, High-Power Spinel-Layered Composite Cathode Materials for Lithium-Ion Batteries
journal, November 2014

  • Bhaskar, Aiswarya; Krueger, Steffen; Siozios, Vassilios
  • Advanced Energy Materials, Vol. 5, Issue 5
  • DOI: 10.1002/aenm.201401156

Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode
journal, January 2010

  • Liu, Jun; Manthiram, Arumugam
  • Journal of Materials Chemistry, Vol. 20, Issue 19
  • DOI: 10.1039/b925711j

Relationship between the electrochemical and particle properties of LiMn2O4 prepared by ultrasonic spray pyrolysis
journal, May 2004


Structural and Electrochemical Study of Al 2 O 3 and TiO 2 Coated Li 1.2 Ni 0.13 Mn 0.54 Co 0.13 O 2 Cathode Material Using ALD
journal, June 2013

  • Zhang, Xiaofeng; Belharouak, Ilias; Li, Li
  • Advanced Energy Materials, Vol. 3, Issue 10
  • DOI: 10.1002/aenm.201300269

The Current Move of Lithium Ion Batteries Towards the Next Phase
journal, May 2012

  • Kim, Tae-Hee; Park, Jeong-Seok; Chang, Sung Kyun
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201200028

Understanding the Degradation Mechanisms of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Material in Lithium Ion Batteries
journal, August 2013

  • Jung, Sung-Kyun; Gwon, Hyeokjo; Hong, Jihyun
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300787

Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials
journal, April 2018


Materials Challenges and Opportunities of Lithium Ion Batteries
journal, January 2011

  • Manthiram, Arumugam
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 3
  • DOI: 10.1021/jz1015422

Overcoming the chemical instability on exposure to air of Ni-rich layered oxide cathodes by coating with spinel LiMn 1.9 Al 0.1 O 4
journal, January 2016

  • Oh, Pilgun; Song, Bohang; Li, Wangda
  • Journal of Materials Chemistry A, Vol. 4, Issue 16
  • DOI: 10.1039/C6TA01061J

Exploration of a Metastable Normal Spinel Phase Diagram for the Quaternary Li–Ni–Mn–Co–O System
journal, February 2016


Cationically Substituted Bi 0.7 Fe 0.3 OCl Nanosheets as Li Ion Battery Anodes
journal, April 2017

  • Myung, Yoon; Choi, Jaewon; Wu, Fei
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 16
  • DOI: 10.1021/acsami.6b16822

Electroplating lithium transition metal oxides
journal, May 2017


Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes
journal, July 2016

  • Liu, Jinyun; Zheng, Qiye; Goodman, Matthew D.
  • Advanced Materials, Vol. 28, Issue 35
  • DOI: 10.1002/adma.201600829

High Full-Electrode Basis Capacity Template-Free 3D Nanocomposite Secondary Battery Anodes
journal, October 2015


Controlled Formation of Mixed Nanoscale Domains of High Capacity Fe 2 O 3 –FeF 3 Conversion Compounds by Direct Fluorination
journal, February 2015


Solid electrolyte coated high voltage layered–layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2
journal, January 2013

  • Martha, Surendra K.; Nanda, Jagjit; Kim, Yoongu
  • Journal of Materials Chemistry A, Vol. 1, Issue 18
  • DOI: 10.1039/c3ta10586e

Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li 7 La 3 Zr 2 O 12
journal, September 2017


High-Energy Cathode Materials (Li 2 MnO 3 –LiMO 2 ) for Lithium-Ion Batteries
journal, March 2013

  • Yu, Haijun; Zhou, Haoshen
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 8
  • DOI: 10.1021/jz400032v

Nanoarchitecture Multi-Structural Cathode Materials for High Capacity Lithium Batteries
journal, June 2012

  • Wang, Dapeng; Belharouak, Ilias; Zhou, Guangwen
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200536

Corrosion/Fragmentation of Layered Composite Cathode and Related Capacity/Voltage Fading during Cycling Process
journal, July 2013

  • Zheng, Jianming; Gu, Meng; Xiao, Jie
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl401849t

Insight into the atomic structure of Li 2 MnO 3 in Li-rich Mn-based cathode materials and the impact of its atomic arrangement on electrochemical performance
journal, January 2017

  • Song, Yuanzhe; Zhao, Xuebing; Wang, Chao
  • Journal of Materials Chemistry A, Vol. 5, Issue 22
  • DOI: 10.1039/C7TA02151H

Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li–Mn–Ni–Co oxide
journal, January 2015

  • Li, Qi; Li, Guangshe; Fu, Chaochao
  • Journal of Materials Chemistry A, Vol. 3, Issue 19
  • DOI: 10.1039/C5TA00929D

Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries
journal, January 2014

  • Ye, Delai; Wang, Bei; Chen, Yu
  • J. Mater. Chem. A, Vol. 2, Issue 44
  • DOI: 10.1039/C4TA03692A

Structural Changes in Li 2 MnO 3 Cathode Material for Li-Ion Batteries
journal, December 2013

  • Rana, Jatinkumar; Stan, Marian; Kloepsch, Richard
  • Advanced Energy Materials, Vol. 4, Issue 5
  • DOI: 10.1002/aenm.201300998

Improved rate capability of the conducting functionalized FTO-coated Li-[Li 0.2 Mn 0.54 Ni 0.13 Co 0.13 ]O 2 cathode material for Li-ion batteries
journal, January 2015

  • Zhu, Xiaoming; Wang, Yanxia; Shang, Kehui
  • Journal of Materials Chemistry A, Vol. 3, Issue 33
  • DOI: 10.1039/C5TA04099J

Enhancing the rate capability of high capacity xLi2MnO3 · (1−x)LiMO2 (M=Mn, Ni, Co) electrodes by Li–Ni–PO4 treatment
journal, April 2009


Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries
journal, December 2012

  • Gu, Meng; Belharouak, Ilias; Zheng, Jianming
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn305065u

Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study
journal, January 2011

  • Xu, Bo; Fell, Christopher R.; Chi, Miaofang
  • Energy & Environmental Science, Vol. 4, Issue 6
  • DOI: 10.1039/c1ee01131f

First Evidence of Manganese–Nickel Segregation and Densification upon Cycling in Li-Rich Layered Oxides for Lithium Batteries
journal, July 2013

  • Boulineau, Adrien; Simonin, Loïc; Colin, Jean-François
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl4019275

Study of Mn dissolution from LiMn2O4 spinel electrodes using in situ total reflection X-ray fluorescence analysis and fluorescence XAFS technique
journal, July 2001


A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries
journal, January 2014

  • Manthiram, Arumugam; Chemelewski, Katharine; Lee, Eun-Sung
  • Energy & Environmental Science, Vol. 7, Issue 4
  • DOI: 10.1039/c3ee42981d

The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes
journal, October 2004


Mechanism of Electrochemical Activity in Li 2 MnO 3
journal, May 2003

  • Robertson, Alastair D.; Bruce, Peter G.
  • Chemistry of Materials, Vol. 15, Issue 10
  • DOI: 10.1021/cm030047u

Interface modifications by anion receptors for high energy lithium ion batteries
journal, March 2014


High Capacity Li-Rich Positive Electrode Materials with Reduced First-Cycle Irreversible Capacity Loss
journal, January 2015

  • Shunmugasundaram, Ramesh; Senthil Arumugam, Rajalakshmi; Dahn, J. R.
  • Chemistry of Materials, Vol. 27, Issue 3
  • DOI: 10.1021/cm504583y

Li‐ and Mn‐Rich Cathode Materials: Challenges to Commercialization
journal, December 2016

  • Zheng, Jianming; Myeong, Seungjun; Cho, Woongrae
  • Advanced Energy Materials, Vol. 7, Issue 6
  • DOI: 10.1002/aenm.201601284

Dual or multi carbonaceous coating strategies for next-generation batteries
journal, January 2018

  • Li, Ping; Zhang, Kan; Park, Jong Hyeok
  • Journal of Materials Chemistry A, Vol. 6, Issue 5
  • DOI: 10.1039/C7TA10343C

Review—Recent Research Progress in Surface Modification of LiFePO 4 Cathode Materials
journal, January 2017

  • Li, Le; Wu, Lu; Wu, Fang
  • Journal of The Electrochemical Society, Vol. 164, Issue 9
  • DOI: 10.1149/2.1571709jes

Review on Challenges and Recent Advances in the Electrochemical Performance of High Capacity Li- and Mn-Rich Cathode Materials for Li-Ion Batteries
journal, December 2017

  • Nayak, Prasant Kumar; Erickson, Evan M.; Schipper, Florian
  • Advanced Energy Materials, Vol. 8, Issue 8
  • DOI: 10.1002/aenm.201702397

Lithium- and Manganese-Rich Oxide Cathode Materials for High-Energy Lithium Ion Batteries
journal, August 2016


Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges
journal, January 2015

  • Rozier, Patrick; Tarascon, Jean Marie
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0111514jes

Improved Performance in FeF 2 Conversion Cathodes through Use of a Conductive 3D Scaffold and Al 2 O 3 ALD Coating
journal, July 2017

  • Kim, Sanghyeon; Liu, Jinyun; Sun, Ke
  • Advanced Functional Materials, Vol. 27, Issue 35
  • DOI: 10.1002/adfm.201702783

Si nanotubes ALD coated with TiO 2 , TiN or Al 2 O 3 as high performance lithium ion battery anodes
journal, January 2014

  • Lotfabad, Elmira Memarzadeh; Kalisvaart, Peter; Kohandehghan, Alireza
  • J. Mater. Chem. A, Vol. 2, Issue 8
  • DOI: 10.1039/C3TA14302C

Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance
journal, January 2013

  • Kohandehghan, Alireza; Kalisvaart, Peter; Cui, Kai
  • Journal of Materials Chemistry A, Vol. 1, Issue 41
  • DOI: 10.1039/c3ta12964k

ALD TiO2 coated silicon nanowires for lithium ion battery anodes with enhanced cycling stability and coulombic efficiency
journal, January 2013

  • Memarzadeh Lotfabad, Elmira; Kalisvaart, Peter; Cui, Kai
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 32
  • DOI: 10.1039/c3cp52485j

Functioning Mechanism of AlF 3 Coating on the Li- and Mn-Rich Cathode Materials
journal, November 2014

  • Zheng, Jianming; Gu, Meng; Xiao, Jie
  • Chemistry of Materials, Vol. 26, Issue 22
  • DOI: 10.1021/cm502071h

Study of the effect of different synthesis routes on Li extraction–insertion from LiCoPO4
journal, July 2005


Comparison of AlPO4- and Co3(PO4)2-coated LiNi0.8Co0.2O2 cathode materials for Li-ion battery
journal, January 2008


Olivine LiCoPO4 phase grown LiCoO2 cathode material for high density Li batteries
journal, January 2007


Material design concept for Fe-substituted Li2MnO3-based positive electrodes
journal, December 2007


Mn source effects on electrochemical properties of Fe -and Ni-substituted Li2MnO3 positive electrode material
journal, April 2015


Participation of Oxygen in Charge/Discharge Reactions in Li1.2Mn0.4Fe0.4O2: Evidence of Removal/Reinsertion of Oxide Ions
journal, January 2011

  • Kikkawa, Jun; Akita, Tomoki; Tabuchi, Mitsuharu
  • Journal of The Electrochemical Society, Vol. 158, Issue 6
  • DOI: 10.1149/1.3571420

Electrochemical performance of cobalt free, Li1.2(Mn0.32Ni0.32Fe0.16)O2 cathodes for lithium batteries
journal, April 2012


Synthesis and characterization of Li(Li0.23Mn0.47Fe0.2Ni0.1)O2 cathode material for Li-ion batteries
journal, December 2013


The electrochemical properties of Fe- and Ni-cosubstituted Li2MnO3 via combustion method
journal, May 2013

  • Liu, Guo-Biao; Liu, Heng; Wang, Yan
  • Journal of Solid State Electrochemistry, Vol. 17, Issue 9
  • DOI: 10.1007/s10008-013-2127-y

Organic-Acid-Assisted Fabrication of Low-Cost Li-Rich Cathode Material (Li[Li 1/6 Fe 1/6 Ni 1/6 Mn 1/2 ]O 2 ) for Lithium–Ion Battery
journal, December 2014

  • Zhao, Taolin; Chen, Shi; Li, Li
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 24
  • DOI: 10.1021/am5062882

First-Principles Analysis of Phase Stability in Layered–Layered Composite Cathodes for Lithium-Ion Batteries
journal, March 2014

  • Iddir, Hakim; Benedek, Roy
  • Chemistry of Materials, Vol. 26, Issue 7
  • DOI: 10.1021/cm403256a

Suppressed capacity/voltage fading of high-capacity lithium-rich layered materials via the design of heterogeneous distribution in the composition
journal, January 2014

  • Yang, Xiukang; Wang, Di; Yu, Ruizhi
  • Journal of Materials Chemistry A, Vol. 2, Issue 11
  • DOI: 10.1039/c3ta14513a

Feasibility of Using Li 2 MoO 3 in Constructing Li-Rich High Energy Density Cathode Materials
journal, May 2014

  • Ma, Jun; Zhou, Yong-Ning; Gao, Yurui
  • Chemistry of Materials, Vol. 26, Issue 10
  • DOI: 10.1021/cm501025r

Improved capacity and stability of integrated Li and Mn rich layered-spinel Li 1.17 Ni 0.25 Mn 1.08 O 3 cathodes for Li-ion batteries
journal, January 2015

  • Nayak, Prasant Kumar; Grinblat, Judith; Levi, Mikhael
  • Journal of Materials Chemistry A, Vol. 3, Issue 28
  • DOI: 10.1039/C5TA02233A

A New Type of Protective Surface Layer for High-Capacity Ni-Based Cathode Materials: Nanoscaled Surface Pillaring Layer
journal, February 2013

  • Cho, Yonghyun; Oh, Pilgun; Cho, Jaephil
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl304558t

The Effects of Acid Treatment on the Electrochemical Properties of 0.5 Li2MnO3 ∙ 0.5 LiNi0.44Co0.25Mn0.31O2 Electrodes in Lithium Cells
journal, January 2006

  • Kang, S.-H.; Johnson, C. S.; Vaughey, J. T.
  • Journal of The Electrochemical Society, Vol. 153, Issue 6, p. A1186-A1192
  • DOI: 10.1149/1.2194764

High-Temperature Treatment of Li-Rich Cathode Materials with Ammonia: Improved Capacity and Mean Voltage Stability during Cycling
journal, May 2017

  • Erickson, Evan M.; Sclar, Hadar; Schipper, Florian
  • Advanced Energy Materials, Vol. 7, Issue 18
  • DOI: 10.1002/aenm.201700708

Self-assembly synthesis and electrochemical performance of Li 1.5 Mn 0.75 Ni 0.15 Co 0.10 O 2+δ microspheres with multilayer shells
journal, January 2015

  • Yu, Ruizhi; Wang, Xianyou; Wang, Di
  • Journal of Materials Chemistry A, Vol. 3, Issue 6
  • DOI: 10.1039/C4TA05281A

Selecting Substituent Elements for Li-Rich Mn-Based Cathode Materials by Density Functional Theory (DFT) Calculations
journal, April 2015


Cation distribution and chemical deintercalation of Li1-xNi1+xO2
journal, May 1990


Effect of Co Content on Rate Performance of LiMn[sub 0.5−x]Co[sub 2x]Ni[sub 0.5−x]O[sub 2] Cathode Materials for Lithium-Ion Batteries
journal, January 2004

  • Sun, Yucheng; Ouyang, Chuying; Wang, Zhaoxiang
  • Journal of The Electrochemical Society, Vol. 151, Issue 4
  • DOI: 10.1149/1.1647574

Prop-1-ene-1,3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries
journal, April 2012


Amorphous Columnar Silicon Anodes for Advanced High Voltage Lithium Ion Full Cells: Dominant Factors Governing Cycling Performance
journal, January 2013

  • Markevich, E.; Fridman, K.; Sharabi, R.
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.085310jes

Studies of Li and Mn-Rich Li x [MnNiCo]O 2 Electrodes: Electrochemical Performance, Structure, and the Effect of the Aluminum Fluoride Coating
journal, January 2013

  • Amalraj, Francis; Talianker, Michael; Markovsky, Boris
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.091311jes

Electrochemical Kinetics and Performance of Layered Composite Cathode Material Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2
journal, January 2013

  • Zheng, Jianming; Shi, Wei; Gu, Meng
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.090311jes

On the challenge of developing advanced technologies for electrochemical energy storage and conversion
journal, April 2014


Carbon Negative Electrodes for Li-Ion Batteries: The Effect of Solutions and Temperatures
journal, January 2014

  • Yariv, Ortal; Hirshberg, Daniel; Zinigrad, Ella
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.1051409jes

A Spinel-Integrated P2-Type Layered Composite: High-Rate Cathode for Sodium-Ion Batteries
journal, January 2016

  • Zheng, Jianming; Yan, Pengfei; Kan, Wang Hay
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.0041605jes

Roles of Surface Chemistry on Safety and Electrochemistry in Lithium Ion Batteries
journal, April 2012

  • Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar200224h

A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride
journal, January 1997

  • Yu, Xiaohua; Bates, J. B.; Jellison, G. E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 2, p. 524-532
  • DOI: 10.1149/1.1837443

Role of Strain-Dependent Surface Energies in Ge / Si ( 100 ) Island Formation
journal, May 2005