skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling the Nucleation of Weak Electrolytes via Hybrid GCMC/MD Simulation

Journal Article · · Journal of Chemical Theory and Computation

We have developed a hybrid grand canonical Monte Carlo/molecular dynamics (GCMC/MD) method for simulating the nucleation of weak electrolytes in an explicit solvent. In contrast to brute-force MD simulation, the approach is capable of efficiently simulating the nucleation of dilute solutions while including the atomistic influence of the surrounding solvent and provides access to the full nucleation free energy surface and associated nucleation free energy barrier. After validating the method against a simple model system, we applied the approach to the nucleation of a low-solubility rock-salt structure in liquid water. We find that the calculated nucleation barriers, in conjunction with analytic rate theories, yield predicted nucleation rates that are in excellent agreement with brute-force MD simulations of the supersaturated solution. We anticipate possible applications of this approach to a wide variety of related weak electrolytes, including CaCO3, zeolites, and metal–organic frameworks.

Research Organization:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division
Grant/Contract Number:
SC0014059
OSTI ID:
1576981
Journal Information:
Journal of Chemical Theory and Computation, Vol. 15, Issue 11; ISSN 1549-9618
Publisher:
American Chemical SocietyCopyright Statement
Country of Publication:
United States
Language:
English

Similar Records

Solvent mediated self-assembly of solids
Technical Report · Fri Dec 12 00:00:00 EST 1997 · OSTI ID:1576981

Monte Carlo simulations of hydrophobic weak polyelectrolytes: Titration properties and pH-induced structural transitions for polymers containing weak electrolytes
Journal Article · Tue Dec 01 00:00:00 EST 1992 · Journal of Chemical Physics; (United States) · OSTI ID:1576981

Explicit- and Implicit-Solvent Simulations of Micellization in Surfactant Solutions
Journal Article · Tue Sep 16 00:00:00 EDT 2014 · Langmuir · OSTI ID:1576981