skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Polymer-in-"quasi-ionic liquid" electrolytes for high-voltage lithium metal batteries

Abstract

Due to the limited oxidation stability (< 4 V) of ether oxygen, PEO-based polymer electrolytes are not compatible with high-voltage (> 4 V) cathodes, restricting the energy density of lithium (Li) metal batteries. Here, we design a new type of polymer in quasi-ionic liquid electrolyte (PQILE) that reduces the lone electron pairs of ether oxygens from PEO and ether solvent, induces the formation of stable interfacial layers on both surfaces of LiNi1/3Mn1/3Co1/3O2 cathode and Li metal anode, resulting in a capacity retention of 88.4%, 86.7% and 79.2% after 300 cycles with the charge cutoff voltage of 4.2, 4.3 and 4.4 V, respectively. It’s promising to use quasi-ionic liquids to design new polymer electrolytes for high-voltage and high-specific-energy Li metal batteries.

Authors:
 [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [2]; ORCiD logo [1];  [3]; ORCiD logo [1];  [4]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. BATTELLE (PACIFIC NW LAB)
  2. U.S. Army Research Laboratory
  3. UNIVERSITY PROGRAMS
  4. U. S. Army Research Laboratory
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1576774
Report Number(s):
PNNL-SA-144443
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 9; Journal Issue: 41
Country of Publication:
United States
Language:
English

Citation Formats

Wu, Haiping, Xu, Yaobin, Ren, Xiaodi, Liu, Bin, Engelhard, Mark H., Ding, Michael S., El-Khoury, Patrick Z., Zhang, Linchao, Li, Qiuyan, Xu, Kang, Wang, Chongmin, Zhang, Jiguang, and Xu, Wu. Polymer-in-"quasi-ionic liquid" electrolytes for high-voltage lithium metal batteries. United States: N. p., 2019. Web. doi:10.1002/aenm.201902108.
Wu, Haiping, Xu, Yaobin, Ren, Xiaodi, Liu, Bin, Engelhard, Mark H., Ding, Michael S., El-Khoury, Patrick Z., Zhang, Linchao, Li, Qiuyan, Xu, Kang, Wang, Chongmin, Zhang, Jiguang, & Xu, Wu. Polymer-in-"quasi-ionic liquid" electrolytes for high-voltage lithium metal batteries. United States. doi:10.1002/aenm.201902108.
Wu, Haiping, Xu, Yaobin, Ren, Xiaodi, Liu, Bin, Engelhard, Mark H., Ding, Michael S., El-Khoury, Patrick Z., Zhang, Linchao, Li, Qiuyan, Xu, Kang, Wang, Chongmin, Zhang, Jiguang, and Xu, Wu. Wed . "Polymer-in-"quasi-ionic liquid" electrolytes for high-voltage lithium metal batteries". United States. doi:10.1002/aenm.201902108.
@article{osti_1576774,
title = {Polymer-in-"quasi-ionic liquid" electrolytes for high-voltage lithium metal batteries},
author = {Wu, Haiping and Xu, Yaobin and Ren, Xiaodi and Liu, Bin and Engelhard, Mark H. and Ding, Michael S. and El-Khoury, Patrick Z. and Zhang, Linchao and Li, Qiuyan and Xu, Kang and Wang, Chongmin and Zhang, Jiguang and Xu, Wu},
abstractNote = {Due to the limited oxidation stability (< 4 V) of ether oxygen, PEO-based polymer electrolytes are not compatible with high-voltage (> 4 V) cathodes, restricting the energy density of lithium (Li) metal batteries. Here, we design a new type of polymer in quasi-ionic liquid electrolyte (PQILE) that reduces the lone electron pairs of ether oxygens from PEO and ether solvent, induces the formation of stable interfacial layers on both surfaces of LiNi1/3Mn1/3Co1/3O2 cathode and Li metal anode, resulting in a capacity retention of 88.4%, 86.7% and 79.2% after 300 cycles with the charge cutoff voltage of 4.2, 4.3 and 4.4 V, respectively. It’s promising to use quasi-ionic liquids to design new polymer electrolytes for high-voltage and high-specific-energy Li metal batteries.},
doi = {10.1002/aenm.201902108},
journal = {Advanced Energy Materials},
number = 41,
volume = 9,
place = {United States},
year = {2019},
month = {11}
}

Works referenced in this record:

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes
journal, March 2018

  • Chen, Shuru; Zheng, Jianming; Mei, Donghai
  • Advanced Materials, Vol. 30, Issue 21
  • DOI: 10.1002/adma.201706102

Localized High-Concentration Sulfone Electrolytes for High-Efficiency Lithium-Metal Batteries
journal, August 2018


Stabilizing lithium metal using ionic liquids for long-lived batteries
journal, June 2016

  • Basile, A.; Bhatt, A. I.; O’Mullane, A. P.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11794

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions
journal, March 2019


Lithium Metal Stability in Batteries with Block Copolymer Electrolytes
journal, January 2013

  • Hallinan, Daniel T.; Mullin, Scott A.; Stone, Gregory M.
  • Journal of The Electrochemical Society, Vol. 160, Issue 3
  • DOI: 10.1149/2.030303jes

Supramolecular Self-Assembly of Methylated Rotaxanes for Solid Polymer Electrolyte Application
journal, June 2018


Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries
journal, January 2019


Complexes of alkali metal ions with poly(ethylene oxide)
journal, November 1973


Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Single lithium-ion conducting solid polymer electrolytes: advances and perspectives
journal, January 2017

  • Zhang, Heng; Li, Chunmei; Piszcz, Michal
  • Chemical Society Reviews, Vol. 46, Issue 3
  • DOI: 10.1039/C6CS00491A

Superconcentrated electrolytes for a high-voltage lithium-ion battery
journal, June 2016

  • Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12032

Stable cycling of high-voltage lithium metal batteries in ether electrolytes
journal, July 2018


Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries
journal, July 2018


Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries
journal, January 2018

  • Suo, Liumin; Xue, Weijiang; Gobet, Mallory
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 6
  • DOI: 10.1073/pnas.1712895115

Double-Layer Polymer Electrolyte for High-Voltage All-Solid-State Rechargeable Batteries
journal, December 2018


Extended Electrochemical Window of Solid Electrolytes via Heterogeneous Multilayered Structure for High‐Voltage Lithium Metal Batteries
journal, January 2019


Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials
journal, January 2004

  • Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.
  • Journal of The Electrochemical Society, Vol. 151, Issue 2
  • DOI: 10.1149/1.1635384

Physicochemical Properties of Glyme–Li Salt Complexes as a New Family of Room-temperature Ionic Liquids
journal, July 2010

  • Tamura, Takashi; Yoshida, Kazuki; Hachida, Takeshi
  • Chemistry Letters, Vol. 39, Issue 7
  • DOI: 10.1246/cl.2010.753

Ionic Liquids: Past, present and future
journal, January 2012

  • Austen Angell, C.; Ansari, Younes; Zhao, Zuofeng
  • Faraday Discuss., Vol. 154
  • DOI: 10.1039/C1FD00112D

Oxidative-Stability Enhancement and Charge Transport Mechanism in Glyme–Lithium Salt Equimolar Complexes
journal, August 2011

  • Yoshida, Kazuki; Nakamura, Megumi; Kazue, Yuichi
  • Journal of the American Chemical Society, Vol. 133, Issue 33, p. 13121-13129
  • DOI: 10.1021/ja203983r

Ionic-Liquid-Based Polymer Electrolytes for Battery Applications
journal, November 2015

  • Osada, Irene; de Vries, Henrik; Scrosati, Bruno
  • Angewandte Chemie International Edition, Vol. 55, Issue 2
  • DOI: 10.1002/anie.201504971

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


A Highly Reversible Lithium Metal Anode
journal, January 2014

  • Park, Min Sik; Ma, Sang Bok; Lee, Dong Joon
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep03815

High-Concentration Ether Electrolytes for Stable High-Voltage Lithium Metal Batteries
journal, March 2019


Electrochemical measurement of transference numbers in polymer electrolytes
journal, December 1987


Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives
journal, January 2011

  • Quartarone, Eliana; Mustarelli, Piercarlo
  • Chemical Society Reviews, Vol. 40, Issue 5
  • DOI: 10.1039/c0cs00081g

Characterization of the Cathode Electrolyte Interface in Lithium Ion Batteries by Desorption Electrospray Ionization Mass Spectrometry
journal, July 2016


In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSI-Based Organic Electrolytes
journal, December 2014

  • Kim, Hyea; Wu, Feixiang; Lee, Jung Tae
  • Advanced Energy Materials, Vol. 5, Issue 6
  • DOI: 10.1002/aenm.201401792

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

Suppressed oxygen extraction and degradation of LiNi x Mn y Co z O2 cathodes at high charge cut-off voltages
journal, September 2017


Identification of Surface Films Formed on Lithium in Dimethoxyethane and Tetrahydrofuran Solutions
journal, January 1988

  • Aurbach, D.
  • Journal of The Electrochemical Society, Vol. 135, Issue 8
  • DOI: 10.1149/1.2096170

Quantifying inactive lithium in lithium metal batteries
journal, August 2019


XPS and SIMS Analysis of Solid Electrolyte Interphases on Lithium Formed by Ether-Based Electrolytes
journal, January 2017

  • Fiedler, Carsten; Luerssen, Bjoern; Rohnke, Marcus
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.0851714jes

The Lithium-Oxygen Battery with Ether-Based Electrolytes
journal, July 2011

  • Freunberger, Stefan A.; Chen, Yuhui; Drewett, Nicholas E.
  • Angewandte Chemie International Edition, Vol. 50, Issue 37, p. 8609-8613
  • DOI: 10.1002/anie.201102357

In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium–Imide- and Lithium–Imidazole-Based Electrolytes
journal, June 2016

  • Eshetu, Gebrekidan Gebresilassie; Diemant, Thomas; Grugeon, Sylvie
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 25
  • DOI: 10.1021/acsami.6b04406

Ultrahigh Performance All Solid-State Lithium Sulfur Batteries: Salt Anion’s Chemistry-Induced Anomalous Synergistic Effect
journal, July 2018

  • Eshetu, Gebrekidan Gebresilassie; Judez, Xabier; Li, Chunmei
  • Journal of the American Chemical Society, Vol. 140, Issue 31
  • DOI: 10.1021/jacs.8b04612

Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries
journal, October 2017

  • Adams, Brian D.; Zheng, Jianming; Ren, Xiaodi
  • Advanced Energy Materials, Vol. 8, Issue 7
  • DOI: 10.1002/aenm.201702097