skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Systems Metabolic Engineering of Escherichia coli Improves Coconversion of Lignocellulose-Derived Sugars

Abstract

Currently, microbial conversion of lignocellulose-derived glucose and xylose to biofuels is hindered by the fact that most microbes (including Escherichia coli [E. coli], Saccharomyces cerevisiae, and Zymomonas mobilis) preferentially consume glucose first and consume xylose slowly after glucose is depleted in lignocellulosic hydrolysates. In this study, E. coli strains are developed that simultaneously utilize glucose and xylose in lignocellulosic biomass hydrolysate using genome-scale models and adaptive laboratory evolution. E. coli strains are designed and constructed that coutilize glucose and xylose and adaptively evolve them to improve glucose and xylose utilization. Whole-genome resequencing of the evolved strains find relevant mutations in metabolic and regulatory genes and the mutations’ involvement in sugar coutilization is investigated. The developed strains show significantly improved coconversion of sugars in lignocellulosic biomass hydrolysates and provide a promising platform for producing next-generation biofuels.

Authors:
ORCiD logo [1];  [2];  [2];  [2];  [2];  [2];  [2]
  1. BATTELLE (PACIFIC NW LAB)
  2. University of Wisconsin-Madison
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1574662
Report Number(s):
PNNL-SA-148827
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Biotechnology Journal
Additional Journal Information:
Journal Volume: 14; Journal Issue: 9
Country of Publication:
United States
Language:
English

Citation Formats

Kim, Joonhoon, Tremaine, Mary, Grass, Jeffrey, Purdy, Hugh, Landick, Robert, Kiley, Patricia J., and Reed, Jennifer L. Systems Metabolic Engineering of Escherichia coli Improves Coconversion of Lignocellulose-Derived Sugars. United States: N. p., 2019. Web. doi:10.1002/biot.201800441.
Kim, Joonhoon, Tremaine, Mary, Grass, Jeffrey, Purdy, Hugh, Landick, Robert, Kiley, Patricia J., & Reed, Jennifer L. Systems Metabolic Engineering of Escherichia coli Improves Coconversion of Lignocellulose-Derived Sugars. United States. doi:10.1002/biot.201800441.
Kim, Joonhoon, Tremaine, Mary, Grass, Jeffrey, Purdy, Hugh, Landick, Robert, Kiley, Patricia J., and Reed, Jennifer L. Tue . "Systems Metabolic Engineering of Escherichia coli Improves Coconversion of Lignocellulose-Derived Sugars". United States. doi:10.1002/biot.201800441.
@article{osti_1574662,
title = {Systems Metabolic Engineering of Escherichia coli Improves Coconversion of Lignocellulose-Derived Sugars},
author = {Kim, Joonhoon and Tremaine, Mary and Grass, Jeffrey and Purdy, Hugh and Landick, Robert and Kiley, Patricia J. and Reed, Jennifer L.},
abstractNote = {Currently, microbial conversion of lignocellulose-derived glucose and xylose to biofuels is hindered by the fact that most microbes (including Escherichia coli [E. coli], Saccharomyces cerevisiae, and Zymomonas mobilis) preferentially consume glucose first and consume xylose slowly after glucose is depleted in lignocellulosic hydrolysates. In this study, E. coli strains are developed that simultaneously utilize glucose and xylose in lignocellulosic biomass hydrolysate using genome-scale models and adaptive laboratory evolution. E. coli strains are designed and constructed that coutilize glucose and xylose and adaptively evolve them to improve glucose and xylose utilization. Whole-genome resequencing of the evolved strains find relevant mutations in metabolic and regulatory genes and the mutations’ involvement in sugar coutilization is investigated. The developed strains show significantly improved coconversion of sugars in lignocellulosic biomass hydrolysates and provide a promising platform for producing next-generation biofuels.},
doi = {10.1002/biot.201800441},
journal = {Biotechnology Journal},
number = 9,
volume = 14,
place = {United States},
year = {2019},
month = {9}
}

Works referenced in this record:

Complex Physiology and Compound Stress Responses during Fermentation of Alkali-Pretreated Corn Stover Hydrolysate by an Escherichia coli Ethanologen
journal, March 2012

  • Schwalbach, Michael S.; Keating, David H.; Tremaine, Mary
  • Applied and Environmental Microbiology, Vol. 78, Issue 9, p. 3442-3457
  • DOI: 10.1128/AEM.07329-11

Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production
journal, January 2010

  • Lau, Ming W.; Gunawan, Christa; Balan, Venkatesh
  • Biotechnology for Biofuels, Vol. 3, Issue 1
  • DOI: 10.1186/1754-6834-3-11

Metabolic Engineering of a Pentose Metabolism Pathway in Ethanologenic Zymomonas mobilis
journal, January 1995


Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate
journal, March 2015

  • Mohagheghi, Ali; Linger, Jeffrey G.; Yang, Shihui
  • Biotechnology for Biofuels, Vol. 8, Issue 1
  • DOI: 10.1186/s13068-015-0233-z

Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol
journal, July 2001

  • Nichols, N.; Dien, B.; Bothast, R.
  • Applied Microbiology and Biotechnology, Vol. 56, Issue 1-2, p. 120-125
  • DOI: 10.1007/s002530100628

Engineering Escherichia coli for xylitol production from glucose-xylose mixtures
journal, December 2006

  • Cirino, Patrick C.; Chin, Jonathan W.; Ingram, Lonnie O.
  • Biotechnology and Bioengineering, Vol. 95, Issue 6, p. 1167-1176
  • DOI: 10.1002/bit.21082

Minimal Escherichia coli Cell for the Most Efficient Production of Ethanol from Hexoses and Pentoses
journal, April 2008

  • Trinh, C. T.; Unrean, P.; Srienc, F.
  • Applied and Environmental Microbiology, Vol. 74, Issue 12, p. 3634-3643
  • DOI: 10.1128/AEM.02708-07

Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli
journal, May 2009


Novel approach to engineer strains for simultaneous sugar utilization
journal, November 2013


Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli
journal, July 2015


Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass
journal, September 2010

  • Kim, Jae-Han; Block, David E.; Mills, David A.
  • Applied Microbiology and Biotechnology, Vol. 88, Issue 5
  • DOI: 10.1007/s00253-010-2839-1

Integrating high-throughput and computational data elucidates bacterial networks
journal, May 2004

  • Covert, Markus W.; Knight, Eric M.; Reed, Jennifer L.
  • Nature, Vol. 429, Issue 6987
  • DOI: 10.1038/nature02456

A genome‐scale metabolic reconstruction for Escherichia coli K‐12 MG1655 that accounts for 1260 ORFs and thermodynamic information
journal, January 2007

  • Feist, Adam M.; Henry, Christopher S.; Reed, Jennifer L.
  • Molecular Systems Biology, Vol. 3, Issue 1
  • DOI: 10.1038/msb4100155

An Automated Phenotype-Driven Approach (GeneForce) for Refining Metabolic and Regulatory Models
journal, October 2010


A comprehensive genome‐scale reconstruction of Escherichia coli metabolism—2011
journal, January 2011

  • Orth, Jeffrey D.; Conrad, Tom M.; Na, Jessica
  • Molecular Systems Biology, Vol. 7, Issue 1
  • DOI: 10.1038/msb.2011.65

OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains
journal, January 2010

  • Kim, Joonhoon; Reed, Jennifer L.
  • BMC Systems Biology, Vol. 4, Issue 1, Article No. 53
  • DOI: 10.1186/1752-0509-4-53

RELATCH: relative optimality in metabolic networks explains robust metabolic and regulatory responses to perturbations
journal, January 2012


Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods
journal, February 2012

  • Lewis, Nathan E.; Nagarajan, Harish; Palsson, Bernhard O.
  • Nature Reviews Microbiology, Vol. 10, Issue 4
  • DOI: 10.1038/nrmicro2737

Computational methods in metabolic engineering for strain design
journal, August 2015


One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
journal, May 2000

  • Datsenko, K. A.; Wanner, B. L.
  • Proceedings of the National Academy of Sciences, Vol. 97, Issue 12, p. 6640-6645
  • DOI: 10.1073/pnas.120163297

Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants the Keio collection
journal, February 2006

  • Baba, Tomoya; Ara, Takeshi; Hasegawa, Miki
  • Molecular Systems Biology, Vol. 2, Article No. 2006.0008
  • DOI: 10.1038/msb4100050

Requirement of the Type II Secretion System for Utilization of Cellulosic Substrates by Cellvibrio japonicus
journal, June 2010

  • Gardner, J. G.; Keating, D. H.
  • Applied and Environmental Microbiology, Vol. 76, Issue 15
  • DOI: 10.1128/AEM.00454-10

The evolution of metabolic networks of E. coli
journal, January 2011

  • Baumler, David J.; Peplinski, Roman G.; Reed, Jennifer L.
  • BMC Systems Biology, Vol. 5, Issue 1, Article No. 182
  • DOI: 10.1186/1752-0509-5-182

Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method
journal, December 2001


Catabolite repression and inducer control in Gram-positive bacteria
journal, February 1996


The catabolite repressor/activator (Cra) protein of enteric bacteria.
journal, June 1996


Relationship between pseudo-HPr and the PEP: fructose phosphotransferase system in Salmonella typhimurium and Escherichia coli
journal, June 1986

  • Geerse, R. H.; Ruig, C. R.; Schuitema, A. R. J.
  • MGG Molecular & General Genetics, Vol. 203, Issue 3
  • DOI: 10.1007/BF00422068

Genetic Engineering of the Phosphocarrier Protein NPr of the Escherichia coli Phosphotransferase System Selectively Improves Sugar Uptake Activity
journal, July 2012

  • Lopez-de los Santos, Yossef; Chan, Henry; Cantu, Vito A.
  • Journal of Biological Chemistry, Vol. 287, Issue 35
  • DOI: 10.1074/jbc.M112.345660

Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization
journal, December 2011


Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products
journal, June 2003

  • Hernández-Montalvo, Verónica; Martínez, Alfredo; Hernández-Chavez, Georgina
  • Biotechnology and Bioengineering, Vol. 83, Issue 6
  • DOI: 10.1002/bit.10702

Repression of galP, the galactose transporter in Escherichia coli, requires the specific regulator of N-acetylglucosamine metabolism
journal, January 2009


CAP and Nag repressor binding to the regulatory regions of the nagE-B and manX genes of Escherichia coli
journal, February 1991


Modification of glucose import capacity in Escherichia coli: physiologic consequences and utility for improving DNA vaccine production
journal, January 2013

  • Fuentes, Laura G.; Lara, Alvaro R.; Martínez, Luz M.
  • Microbial Cell Factories, Vol. 12, Issue 1
  • DOI: 10.1186/1475-2859-12-42

Adaptive Evolution of Escherichia coli Inactivated in the Phosphotransferase System Operon Improves Co-utilization of Xylose and Glucose Under Anaerobic Conditions
journal, August 2010

  • Balderas-Hernández, Victor Emmanuel; Hernández-Montalvo, Verónica; Bolívar, Francisco
  • Applied Biochemistry and Biotechnology, Vol. 163, Issue 4
  • DOI: 10.1007/s12010-010-9056-3

Pathway engineering for the production of aromatic compounds in Escherichia coli
journal, May 1996

  • Floras, Noemí; Xiao, Jimmy; Berry, Alan
  • Nature Biotechnology, Vol. 14, Issue 5
  • DOI: 10.1038/nbt0596-620