skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: REV7 has a dynamic adaptor region to accommodate small GTPase RAN/Shigella IpaB ligands, and its activity is regulated by the RanGTP/GDP switch

Authors:
; ; ; ; ; ;  [1]
  1. Tianjin NU
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
FOREIGN
OSTI Identifier:
1574158
Resource Type:
Journal Article
Journal Name:
J. Biol. Chem.
Additional Journal Information:
Journal Volume: 294; Journal Issue: (43) ; 10, 2019
Country of Publication:
United States
Language:
ENGLISH

Citation Formats

Wang, Xin, Pernicone, Nomi, Pertz, Limor, Hua, Deping, Zhang, Tianqing, Listovsky, Tamar, and Xie, Wei. REV7 has a dynamic adaptor region to accommodate small GTPase RAN/Shigella IpaB ligands, and its activity is regulated by the RanGTP/GDP switch. United States: N. p., 2019. Web. doi:10.1074/jbc.RA119.010123.
Wang, Xin, Pernicone, Nomi, Pertz, Limor, Hua, Deping, Zhang, Tianqing, Listovsky, Tamar, & Xie, Wei. REV7 has a dynamic adaptor region to accommodate small GTPase RAN/Shigella IpaB ligands, and its activity is regulated by the RanGTP/GDP switch. United States. doi:10.1074/jbc.RA119.010123.
Wang, Xin, Pernicone, Nomi, Pertz, Limor, Hua, Deping, Zhang, Tianqing, Listovsky, Tamar, and Xie, Wei. Tue . "REV7 has a dynamic adaptor region to accommodate small GTPase RAN/Shigella IpaB ligands, and its activity is regulated by the RanGTP/GDP switch". United States. doi:10.1074/jbc.RA119.010123.
@article{osti_1574158,
title = {REV7 has a dynamic adaptor region to accommodate small GTPase RAN/Shigella IpaB ligands, and its activity is regulated by the RanGTP/GDP switch},
author = {Wang, Xin and Pernicone, Nomi and Pertz, Limor and Hua, Deping and Zhang, Tianqing and Listovsky, Tamar and Xie, Wei},
abstractNote = {},
doi = {10.1074/jbc.RA119.010123},
journal = {J. Biol. Chem.},
number = (43) ; 10, 2019,
volume = 294,
place = {United States},
year = {2019},
month = {11}
}

Works referenced in this record:

REV7, a new gene concerned with UV mutagenesis in yeast
journal, January 1985

  • Lawrence, Christopher W.; Das, Goutam; Christensen, Roshan B.
  • MGG Molecular & General Genetics, Vol. 200, Issue 1
  • DOI: 10.1007/BF00383316

A Human REV7 Homolog That Interacts with the Polymerase ζ Catalytic Subunit hREV3 and the Spindle Assembly Checkpoint Protein hMAD2
journal, February 2000

  • Murakumo, Yoshiki; Roth, Tim; Ishii, Hideshi
  • Journal of Biological Chemistry, Vol. 275, Issue 6
  • DOI: 10.1074/jbc.275.6.4391

Interactions in the Error-prone Postreplication Repair Proteins hREV1, hREV3, and hREV7
journal, August 2001

  • Murakumo, Yoshiki; Ogura, Yukiko; Ishii, Hideshi
  • Journal of Biological Chemistry, Vol. 276, Issue 38
  • DOI: 10.1074/jbc.M102051200

Crystal Structure of Human REV7 in Complex with a Human REV3 Fragment and Structural Implication of the Interaction between DNA Polymerase ζ and REV1
journal, February 2010

  • Hara, Kodai; Hashimoto, Hiroshi; Murakumo, Yoshiki
  • Journal of Biological Chemistry, Vol. 285, Issue 16
  • DOI: 10.1074/jbc.M109.092403

Unconventional Ubiquitin Recognition by the Ubiquitin-Binding Motif within the Y Family DNA Polymerases ι and Rev1
journal, February 2010


Chemically ubiquitylated PCNA as a probe for eukaryotic translesion DNA synthesis
journal, March 2010

  • Chen, Junjun; Ai, Yongxing; Wang, Jialiang
  • Nature Chemical Biology, Vol. 6, Issue 4
  • DOI: 10.1038/nchembio.316

PCNA Ubiquitination and REV1 Define Temporally Distinct Mechanisms for Controlling Translesion Synthesis in the Avian Cell Line DT40
journal, May 2008


Structure of monoubiquitinated PCNA and implications for translesion synthesis and DNA polymerase exchange
journal, March 2010

  • Freudenthal, Bret D.; Gakhar, Lokesh; Ramaswamy, S.
  • Nature Structural & Molecular Biology, Vol. 17, Issue 4
  • DOI: 10.1038/nsmb.1776

Structural Basis of Rev1-mediated Assembly of a Quaternary Vertebrate Translesion Polymerase Complex Consisting of Rev1, Heterodimeric Polymerase (Pol) ζ, and Pol κ
journal, August 2012

  • Wojtaszek, Jessica; Lee, Chul-Jin; D'Souza, Sanjay
  • Journal of Biological Chemistry, Vol. 287, Issue 40
  • DOI: 10.1074/jbc.M112.394841

Structural Basis of Recruitment of DNA Polymerase ζ by Interaction between REV1 and REV7 Proteins
journal, August 2012

  • Kikuchi, Sotaro; Hara, Kodai; Shimizu, Toshiyuki
  • Journal of Biological Chemistry, Vol. 287, Issue 40
  • DOI: 10.1074/jbc.M112.396838

Structural insights into the assembly of human translesion polymerase complexes
journal, November 2012


Inhibition of Cdh1-APC by the MAD2-related protein MAD2L2: a novel mechanism for regulating Cdh1
journal, July 2001


MAD2B is an inhibitor of the anaphase-promoting complex
journal, July 2001


Sequestration of CDH1 by MAD2L2 prevents premature APC/C activation prior to anaphase onset
journal, October 2013

  • Listovsky, Tamar; Sale, Julian E.
  • The Journal of Cell Biology, Vol. 203, Issue 1
  • DOI: 10.1083/jcb.201302060

MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection
journal, March 2015

  • Boersma, Vera; Moatti, Nathalie; Segura-Bayona, Sandra
  • Nature, Vol. 521, Issue 7553
  • DOI: 10.1038/nature14216

REV7 counteracts DNA double-strand break resection and affects PARP inhibition
journal, March 2015

  • Xu, Guotai; Chapman, J. Ross; Brandsma, Inger
  • Nature, Vol. 521, Issue 7553
  • DOI: 10.1038/nature14328

53BP1–RIF1–shieldin counteracts DSB resection through CST- and Polα-dependent fill-in
journal, July 2018


The shieldin complex mediates 53BP1-dependent DNA repair
journal, July 2018


53BP1 cooperation with the REV7–shieldin complex underpins DNA structure-specific NHEJ
journal, July 2018


Rev7 dimerization is important for assembly and function of the Rev1/Polζ translesion synthesis complex
journal, August 2018

  • Rizzo, Alessandro A.; Vassel, Faye-Marie; Chatterjee, Nimrat
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 35
  • DOI: 10.1073/pnas.1801149115

Dynamic feature of mitotic arrest deficient 2–like protein 2 (MAD2L2) and structural basis for its interaction with chromosome alignment–maintaining phosphoprotein (CAMP)
journal, September 2017

  • Hara, Kodai; Taharazako, Shota; Ikeda, Masanori
  • Journal of Biological Chemistry, Vol. 292, Issue 43
  • DOI: 10.1074/jbc.M117.804237

Potential Strategies to Target Protein–Protein Interactions in the DNA Damage Response and Repair Pathways
journal, July 2017


Structural Approach To Identify a Lead Scaffold That Targets the Translesion Synthesis Polymerase Rev1
journal, October 2018

  • Dash, Radha Charan; Ozen, Zuleyha; Rizzo, Alessandro A.
  • Journal of Chemical Information and Modeling, Vol. 58, Issue 11
  • DOI: 10.1021/acs.jcim.8b00535

Targeting the Translesion Synthesis Pathway for the Development of Anti-Cancer Chemotherapeutics
journal, July 2016


A Small Molecule Targeting Mutagenic Translesion Synthesis Improves Chemotherapy
journal, June 2019


Spatial and temporal coordination of mitosis by Ran GTPase
journal, May 2008

  • Clarke, Paul R.; Zhang, Chuanmao
  • Nature Reviews Molecular Cell Biology, Vol. 9, Issue 6
  • DOI: 10.1038/nrm2410

The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly
journal, July 2002

  • Hetzer, Martin; Gruss, Oliver J.; Mattaj, Iain W.
  • Nature Cell Biology, Vol. 4, Issue 7
  • DOI: 10.1038/ncb0702-e177

Structure of the nuclear transport complex karyopherin-β2–Ran˙GppNHp
journal, May 1999

  • Chook, Yuh Min; Blobel, Günter
  • Nature, Vol. 399, Issue 6733
  • DOI: 10.1038/20375

RanGAP mediates GTP hydrolysis without an arginine finger
journal, February 2002

  • Seewald, Michael J.; Körner, Carolin; Wittinghofer, Alfred
  • Nature, Vol. 415, Issue 6872
  • DOI: 10.1038/415662a

A Survivin-Ran Complex Regulates Spindle Formation in Tumor Cells
journal, June 2008

  • Xia, F.; Canovas, P. M.; Guadagno, T. M.
  • Molecular and Cellular Biology, Vol. 28, Issue 17
  • DOI: 10.1128/MCB.02039-07

Crystallographic and Biochemical Analysis of the Ran-binding Zinc Finger Domain
journal, August 2009


Small GTPase Ran and Ran-binding proteins
journal, January 2012


The Tripartite Type III Secreton of Shigella flexneri Inserts Ipab and Ipac into Host Membranes
journal, November 1999

  • Blocker, Ariel; Gounon, Pierre; Larquet, Eric
  • The Journal of Cell Biology, Vol. 147, Issue 3
  • DOI: 10.1083/jcb.147.3.683

CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells
journal, February 2000


Shigella-induced Apoptosis Is Dependent on Caspase-1 Which Binds to IpaB
journal, December 1998

  • Hilbi, Hubert; Moss, Jeremy E.; Hersh, David
  • Journal of Biological Chemistry, Vol. 273, Issue 49
  • DOI: 10.1074/jbc.273.49.32895

A bacterial invasin induces macrophage apoptosis by binding directly to ICE.
journal, August 1996


Shigella flexneri induces apoptosis in infected macrophages
journal, July 1992

  • Zychlinsky, Arturo; Prevost, Marie Christine; Sansonetti, Philippe J.
  • Nature, Vol. 358, Issue 6382
  • DOI: 10.1038/358167a0

A Bacterial Effector Targets Mad2L2, an APC Inhibitor, to Modulate Host Cell Cycling
journal, August 2007


The multifaceted roles of the HORMA domain in cellular signaling
journal, November 2015

  • Rosenberg, Scott C.; Corbett, Kevin D.
  • The Journal of Cell Biology, Vol. 211, Issue 4
  • DOI: 10.1083/jcb.201509076

A synergistic approach to protein crystallization: Combination of a fixed-arm carrier with surface entropy reduction
journal, January 2010

  • Moon, Andrea F.; Mueller, Geoffrey A.; Zhong, Xuejun
  • Protein Science
  • DOI: 10.1002/pro.368

IpaB-IpgC interaction defines binding motif for type III secretion translocator
journal, May 2009

  • Lunelli, M.; Lokareddy, R. K.; Zychlinsky, A.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 24
  • DOI: 10.1073/pnas.0812900106

Combination of Two Separate Binding Domains Defines Stoichiometry between Type III Secretion System Chaperone IpgC and Translocator Protein IpaB
journal, October 2010

  • Lokareddy, Ravi Kumar; Lunelli, Michele; Eilers, Björn
  • Journal of Biological Chemistry, Vol. 285, Issue 51
  • DOI: 10.1074/jbc.M110.135616

Structural Basis for RanGTP Independent Entry of Spliceosomal U snRNPs into the Nucleus
journal, December 2007

  • Wohlwend, Daniel; Strasser, Anja; Dickmanns, Achim
  • Journal of Molecular Biology, Vol. 374, Issue 4
  • DOI: 10.1016/j.jmb.2007.09.065

Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities
journal, January 2001

  • Wilde, Andrew; Lizarraga, Sofia B.; Zhang, Lijun
  • Nature Cell Biology, Vol. 3, Issue 3
  • DOI: 10.1038/35060000

A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly
journal, February 2003

  • Tsai, Ming-Ying; Wiese, Christiane; Cao, Kan
  • Nature Cell Biology, Vol. 5, Issue 3
  • DOI: 10.1038/ncb936

Ran–GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly
journal, January 2001

  • Carazo-Salas, Rafael E.; Gruss, Oliver J.; Mattaj, Iain W.
  • Nature Cell Biology, Vol. 3, Issue 3
  • DOI: 10.1038/35060009

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Towards automated crystallographic structure refinement with phenix.refine
journal, March 2012

  • Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel
  • Acta Crystallographica Section D Biological Crystallography, Vol. 68, Issue 4
  • DOI: 10.1107/S0907444912001308