skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dynamics of Back Electron Transfer in Dye-Sensitized Solar Cells Featuring 4-tert-Butyl-Pyridine and Atomic-Layer-Deposition Alumina as Surface Modifiers.

Journal Article · · Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
DOI:https://doi.org/10.1021/jp506083a· OSTI ID:1571239

A series of dye-sensitized solar cells (DSCs) was constructed with TiO2 nanoparticles and N719 dye. The standard I-3(-)/I- redox shuttle and the Co(1,10-phenanthroline)(3)(3+/2+) shuttle were employed. DSCs were modified with atomic-layered-deposited (ALD) coatings of Al2O3 and/or with the surface-adsorbing additive 4-tert-butyl-pyridine. Current-voltage data were collected to ascertain the influence of each modification upon the back electron transfer (ET) dynamics of the DSCs. The primary effect of the additives alone or in tandem is to increase the open-circuit voltage. A second is to alter the short-circuit current density, J(SC). With dependence on the specifics of the system examined, any of a myriad of dynamics-related effects were observed to come into play, in both favorable (efficiency boosting) and unfavorable (efficiency damaging) ways. These effects include modulation of (a) charge-injection yields, (b) rates of interception of injected electrons by redox shuttles, and (c) rates of recombination of injected electrons with holes on surface-bound dyes. In turn, these influence charge-collection lengths, charge-collection yields, and onset potentials for undesired dark current. The microscopic origins of the effects appear to be related mainly to changes in driving force and/or electronic coupling for underlying component redox reactions. Perhaps surprisingly, only a minor role for modifier-induced shifts in conduction-band-edge energy was found. The combination of DSC-efficiency-relevant effects engendered by the modifiers was found to vary substantially as a function of the chemical identity of the redox shuttle employed. While types of modifiers are effective, a challenge going forward will be to construct systems in ways in which the benefits of organic and inorganic modifiers can be exploited in fully additive, or even synergistic, fashion.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science - Energy Frontier Research Center - Argonne-Northwestern Solar Energy Research (ANSER)
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1571239
Journal Information:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry, Vol. 119, Issue 24
Country of Publication:
United States
Language:
English