skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cooperative efficiency boost for quantum heat engines

Abstract

The power and efficiency of many-body heat engines can be boosted by performing cooperative nonadiabatic operations in contrast to the commonly used adiabatic implementations. Here the key property relies on the fact that nonadiabaticity is required in order to allow for cooperative effects that can use the thermodynamic resources only present in the collective nonpassive state of a many-body system. In particular, we consider the efficiency of an Otto cycle, which increases with the number of copies used and reaches a many-body bound, which we discuss analytically.

Authors:
; ;
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1566678
DOE Contract Number:  
SC0001088
Resource Type:
Journal Article
Journal Name:
Physical Review A
Additional Journal Information:
Journal Volume: 99; Journal Issue: 2; Journal ID: ISSN 2469-9926
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
solar (photovoltaic), solid state lighting, photosynthesis (natural and artificial), charge transport, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)

Citation Formats

Gelbwaser-Klimovsky, David, Kopylov, Wassilij, and Schaller, Gernot. Cooperative efficiency boost for quantum heat engines. United States: N. p., 2019. Web. doi:10.1103/physreva.99.022129.
Gelbwaser-Klimovsky, David, Kopylov, Wassilij, & Schaller, Gernot. Cooperative efficiency boost for quantum heat engines. United States. doi:10.1103/physreva.99.022129.
Gelbwaser-Klimovsky, David, Kopylov, Wassilij, and Schaller, Gernot. Fri . "Cooperative efficiency boost for quantum heat engines". United States. doi:10.1103/physreva.99.022129.
@article{osti_1566678,
title = {Cooperative efficiency boost for quantum heat engines},
author = {Gelbwaser-Klimovsky, David and Kopylov, Wassilij and Schaller, Gernot},
abstractNote = {The power and efficiency of many-body heat engines can be boosted by performing cooperative nonadiabatic operations in contrast to the commonly used adiabatic implementations. Here the key property relies on the fact that nonadiabaticity is required in order to allow for cooperative effects that can use the thermodynamic resources only present in the collective nonpassive state of a many-body system. In particular, we consider the efficiency of an Otto cycle, which increases with the number of copies used and reaches a many-body bound, which we discuss analytically.},
doi = {10.1103/physreva.99.022129},
journal = {Physical Review A},
issn = {2469-9926},
number = 2,
volume = 99,
place = {United States},
year = {2019},
month = {2}
}

Works referenced in this record:

Quantum Thermodynamics: A Dynamical Viewpoint
journal, May 2013


Work extremum principle: Structure and function of quantum heat engines
journal, April 2008

  • Allahverdyan, Armen E.; Johal, Ramandeep S.; Mahler, Guenter
  • Physical Review E, Vol. 77, Issue 4
  • DOI: 10.1103/PhysRevE.77.041118

Quantal Phase Factors Accompanying Adiabatic Changes
journal, March 1984

  • Berry, M. V.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 392, Issue 1802
  • DOI: 10.1098/rspa.1984.0023

Evolution of systems with a slowly changing Hamiltonian
journal, August 1989


Consistency of the Adiabatic Theorem
journal, December 2004


General error estimate for adiabatic quantum computing
journal, June 2006


Bounds for the adiabatic approximation with applications to quantum computation
journal, October 2007

  • Jansen, Sabine; Ruskai, Mary-Beth; Seiler, Ruedi
  • Journal of Mathematical Physics, Vol. 48, Issue 10
  • DOI: 10.1063/1.2798382

Work and efficiency of quantum Otto cycles in power-law trapping potentials
journal, July 2014


Quantum thermodynamic cycles and quantum heat engines
journal, September 2007


Quantum supremacy of many-particle thermal machines
journal, July 2016


Phase-space interference in extensive and nonextensive quantum heat engines
journal, April 2018

  • Hardal, Ali Ü. C.; Paternostro, Mauro; Müstecaplıoğlu, Özgür E.
  • Physical Review E, Vol. 97, Issue 4
  • DOI: 10.1103/PhysRevE.97.042127

Cooperative many-body enhancement of quantum thermal machine power
journal, November 2018


Performance limits of multilevel and multipartite quantum heat machines
journal, October 2015

  • Niedenzu, Wolfgang; Gelbwaser-Klimovsky, David; Kurizki, Gershon
  • Physical Review E, Vol. 92, Issue 4
  • DOI: 10.1103/PhysRevE.92.042123

More bang for your buck: Super-adiabatic quantum engines
journal, August 2014

  • Campo, A. del; Goold, J.; Paternostro, M.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06208

Quantum engine based on many-body localization
journal, January 2019

  • Yunger Halpern, Nicole; White, Christopher David; Gopalakrishnan, Sarang
  • Physical Review B, Vol. 99, Issue 2
  • DOI: 10.1103/PhysRevB.99.024203

Single-Atom Heat Machines Enabled by Energy Quantization
journal, April 2018


Maximal work extraction from finite quantum systems
journal, August 2004

  • Allahverdyan, A. E.; Balian, R.; Nieuwenhuizen, Th. M.
  • Europhysics Letters (EPL), Vol. 67, Issue 4
  • DOI: 10.1209/epl/i2004-10101-2

On the operation of machines powered by quantum non-thermal baths
journal, August 2016


Passive states and KMS states for general quantum systems
journal, October 1978

  • Pusz, W.; Woronowicz, S. L.
  • Communications in Mathematical Physics, Vol. 58, Issue 3
  • DOI: 10.1007/BF01614224

Thermodynamical proof of the Gibbs formula for elementary quantum systems
journal, December 1978


Work and energy gain of heat-pumped quantized amplifiers
journal, September 2013


Passive states for finite classical systems
journal, November 1980

  • G�recki, J.; Pusz, W.
  • Letters in Mathematical Physics, Vol. 4, Issue 6
  • DOI: 10.1007/BF00943428

A single-atom heat engine
journal, April 2016


Performance of a quantum heat engine at strong reservoir coupling
journal, March 2017


Entanglement boost for extractable work from ensembles of quantum batteries
journal, April 2013


Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures
journal, September 2015


Entanglement Generation is Not Necessary for Optimal Work Extraction
journal, December 2013


Correlation approach to work extraction from finite quantum systems
journal, January 2015

  • Giorgi, Gian Luca; Campbell, Steve
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 48, Issue 3
  • DOI: 10.1088/0953-4075/48/3/035501

Entropy production for quantum dynamical semigroups
journal, May 1978

  • Spohn, Herbert
  • Journal of Mathematical Physics, Vol. 19, Issue 5
  • DOI: 10.1063/1.523789

Entropy production as correlation between system and reservoir
journal, January 2010

  • Esposito, Massimiliano; Lindenberg, Katja; Van den Broeck, Christian
  • New Journal of Physics, Vol. 12, Issue 1
  • DOI: 10.1088/1367-2630/12/1/013013