skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The divide-expand-consolidate coupled cluster scheme: Divide-expand-consolidate coupled cluster

Abstract

The Divide‐Expand‐Consolidate (DEC) scheme is a linear‐scaling and massively parallel framework for high accuracy coupled cluster (CC) calculations on large molecular systems. It is designed as a black‐box method, which ensures error control in the correlation energy and molecular properties. DEC is combined with a massively parallel implementation to fully utilize modern manycore architectures providing a fast time to solution. The implementation ensures performance portability and will straightforwardly benefit from new hardware developments. The DEC scheme has been applied to several levels of CC theory and extended the range of application of those methods.

Authors:
 [1];  [1];  [1];  [1];  [1]
  1. Department of Chemistry, Aarhus University, Aarhus Denmark
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); UT-Battelle LLC/ORNL, Oak Ridge, TN (Unted States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1565637
DOE Contract Number:  
AC05-00OR22725
Resource Type:
Journal Article
Journal Name:
Wiley Interdisciplinary Reviews: Computational Molecular Science
Additional Journal Information:
Journal Volume: 7; Journal Issue: 6; Journal ID: ISSN 1759-0876
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
Chemistry; Mathematical & Computational Biology

Citation Formats

Kjaergaard, Thomas, Baudin, Pablo, Bykov, Dmytro, Kristensen, Kasper, and Jørgensen, Poul. The divide-expand-consolidate coupled cluster scheme: Divide-expand-consolidate coupled cluster. United States: N. p., 2017. Web. doi:10.1002/wcms.1319.
Kjaergaard, Thomas, Baudin, Pablo, Bykov, Dmytro, Kristensen, Kasper, & Jørgensen, Poul. The divide-expand-consolidate coupled cluster scheme: Divide-expand-consolidate coupled cluster. United States. doi:10.1002/wcms.1319.
Kjaergaard, Thomas, Baudin, Pablo, Bykov, Dmytro, Kristensen, Kasper, and Jørgensen, Poul. Mon . "The divide-expand-consolidate coupled cluster scheme: Divide-expand-consolidate coupled cluster". United States. doi:10.1002/wcms.1319.
@article{osti_1565637,
title = {The divide-expand-consolidate coupled cluster scheme: Divide-expand-consolidate coupled cluster},
author = {Kjaergaard, Thomas and Baudin, Pablo and Bykov, Dmytro and Kristensen, Kasper and Jørgensen, Poul},
abstractNote = {The Divide‐Expand‐Consolidate (DEC) scheme is a linear‐scaling and massively parallel framework for high accuracy coupled cluster (CC) calculations on large molecular systems. It is designed as a black‐box method, which ensures error control in the correlation energy and molecular properties. DEC is combined with a massively parallel implementation to fully utilize modern manycore architectures providing a fast time to solution. The implementation ensures performance portability and will straightforwardly benefit from new hardware developments. The DEC scheme has been applied to several levels of CC theory and extended the range of application of those methods.},
doi = {10.1002/wcms.1319},
journal = {Wiley Interdisciplinary Reviews: Computational Molecular Science},
issn = {1759-0876},
number = 6,
volume = 7,
place = {United States},
year = {2017},
month = {6}
}

Works referenced in this record:

MPI/OpenMP Hybrid Parallel Algorithm of Resolution of Identity Second-Order Møller–Plesset Perturbation Calculation for Massively Parallel Multicore Supercomputers
journal, November 2013

  • Katouda, Michio; Nakajima, Takahito
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 12
  • DOI: 10.1021/ct400795v

Massively parallel algorithm and implementation of RI-MP2 energy calculation for peta-scale many-core supercomputers
journal, September 2016

  • Katouda, Michio; Naruse, Akira; Hirano, Yukihiko
  • Journal of Computational Chemistry, Vol. 37, Issue 30
  • DOI: 10.1002/jcc.24491

A massively parallel tensor contraction framework for coupled-cluster computations
journal, December 2014

  • Solomonik, Edgar; Matthews, Devin; Hammond, Jeff R.
  • Journal of Parallel and Distributed Computing, Vol. 74, Issue 12
  • DOI: 10.1016/j.jpdc.2014.06.002

Global arrays: A nonuniform memory access programming model for high-performance computers
journal, January 1996

  • Nieplocha, Jaroslaw; Harrison, RobertJ.; Littlefield, RichardJ.
  • The Journal of Supercomputing, Vol. 10, Issue 2
  • DOI: 10.1007/BF00130708

Massively Parallel Implementation of Explicitly Correlated Coupled-Cluster Singles and Doubles Using TiledArray Framework
journal, December 2016

  • Peng, Chong; Calvin, Justus A.; Pavošević, Fabijan
  • The Journal of Physical Chemistry A, Vol. 120, Issue 51
  • DOI: 10.1021/acs.jpca.6b10150

Linear scaling coupled cluster method with correlation energy based error control
journal, July 2010

  • Ziółkowski, Marcin; Jansík, Branislav; Kjærgaard, Thomas
  • The Journal of Chemical Physics, Vol. 133, Issue 1
  • DOI: 10.1063/1.3456535

A Locality Analysis of the Divide–Expand–Consolidate Coupled Cluster Amplitude Equations
journal, May 2011

  • Kristensen, Kasper; Ziółkowski, Marcin; Jansík, Branislav
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 6
  • DOI: 10.1021/ct200114k

Orbital spaces in the divide-expand-consolidate coupled cluster method
journal, April 2016

  • Ettenhuber, Patrick; Baudin, Pablo; Kjærgaard, Thomas
  • The Journal of Chemical Physics, Vol. 144, Issue 16
  • DOI: 10.1063/1.4947019

The divide-expand-consolidate family of coupled cluster methods: Numerical illustrations using second order Møller-Plesset perturbation theory
journal, January 2012

  • Høyvik, Ida-Marie; Kristensen, Kasper; Jansik, Branislav
  • The Journal of Chemical Physics, Vol. 136, Issue 1
  • DOI: 10.1063/1.3667266

Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme
journal, September 2012

  • Kristensen, Kasper; Jørgensen, Poul; Jansík, Branislav
  • The Journal of Chemical Physics, Vol. 137, Issue 11
  • DOI: 10.1063/1.4752432

MP2 energy and density for large molecular systems with internal error control using the Divide-Expand-Consolidate scheme
journal, January 2012

  • Kristensen, Kasper; Høyvik, Ida-Marie; Jansik, Branislav
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 45
  • DOI: 10.1039/c2cp41958k

The divide–expand–consolidate MP2 scheme goes massively parallel
journal, April 2013


Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide–expand–consolidate RI-MP2 model
journal, February 2016

  • Baudin, Pablo; Ettenhuber, Patrick; Reine, Simen
  • The Journal of Chemical Physics, Vol. 144, Issue 5
  • DOI: 10.1063/1.4940732

The molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory: The DEC-RI-MP2 gradient
journal, July 2016

  • Bykov, Dmytro; Kristensen, Kasper; Kjærgaard, Thomas
  • The Journal of Chemical Physics, Vol. 145, Issue 2
  • DOI: 10.1063/1.4956454

The GPU-enabled divide-expand-consolidate RI-MP2 method (DEC-RI-MP2)
journal, December 2016

  • Bykov, Dmytro; Kjaergaard, Thomas
  • Journal of Computational Chemistry, Vol. 38, Issue 4
  • DOI: 10.1002/jcc.24678

Massively parallel and linear-scaling algorithm for second-order Møller–Plesset perturbation theory applied to the study of supramolecular wires
journal, March 2017


Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context
journal, May 2016

  • Wang, Yang Min; Hättig, Christof; Reine, Simen
  • The Journal of Chemical Physics, Vol. 144, Issue 20
  • DOI: 10.1063/1.4951696

Linear-Scaling Coupled Cluster with Perturbative Triple Excitations: The Divide–Expand–Consolidate CCSD(T) Model
journal, June 2015

  • Eriksen, Janus J.; Baudin, Pablo; Ettenhuber, Patrick
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 7
  • DOI: 10.1021/acs.jctc.5b00086

Localizability of dynamic electron correlation
journal, September 1983


Application of the many-body perturbation theory by using localized orbitals: MBPT USING LOCALIZED ORBITALS
journal, March 1983

  • Kapuy, Ede; Csépes, Zoltán; Kozmutza, Cornelia
  • International Journal of Quantum Chemistry, Vol. 23, Issue 3
  • DOI: 10.1002/qua.560230321

Local Treatment of Electron Correlation
journal, October 1993


Orbital-invariant formulation and second-order gradient evaluation in M�ller-Plesset perturbation theory
journal, June 1986

  • Pulay, Peter; Saeb�, Svein
  • Theoretica Chimica Acta, Vol. 69, Issue 5-6
  • DOI: 10.1007/BF00526697

Multipole approximation of distant pair energies in local MP2 calculations
journal, June 1998


Low-order scaling local electron correlation methods. I. Linear scaling local MP2
journal, October 1999

  • Schütz, Martin; Hetzer, Georg; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 111, Issue 13
  • DOI: 10.1063/1.479957

Pseudospectral localized Mo/ller–Plesset methods: Theory and calculation of conformational energies
journal, July 1995

  • Murphy, Robert B.; Beachy, Michael D.; Friesner, Richard A.
  • The Journal of Chemical Physics, Vol. 103, Issue 4
  • DOI: 10.1063/1.469769

Local treatment of electron correlation in coupled cluster theory
journal, April 1996

  • Hampel, Claudia; Werner, Hans‐Joachim
  • The Journal of Chemical Physics, Vol. 104, Issue 16
  • DOI: 10.1063/1.471289

Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations
journal, May 2003

  • Werner, Hans-Joachim; Manby, Frederick R.; Knowles, Peter J.
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564816

Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction ( T )
journal, December 2000

  • Schütz, Martin
  • The Journal of Chemical Physics, Vol. 113, Issue 22
  • DOI: 10.1063/1.1323265

Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD)
journal, January 2001

  • Schütz, Martin; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 114, Issue 2
  • DOI: 10.1063/1.1330207

Explicitly correlated second-order perturbation theory using density fitting and local approximations
journal, February 2006

  • Werner, Hans-Joachim; Manby, Frederick R.
  • The Journal of Chemical Physics, Vol. 124, Issue 5
  • DOI: 10.1063/1.2150817

On the use of the Laplace transform in local correlation methods
journal, January 2008

  • Kats, Danylo; Usvyat, Denis; Schütz, Martin
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 23
  • DOI: 10.1039/b802993h

Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis
journal, January 2009

  • Neese, Frank; Hansen, Andreas; Liakos, Dimitrios G.
  • The Journal of Chemical Physics, Vol. 131, Issue 6
  • DOI: 10.1063/1.3173827

An efficient local coupled cluster method for accurate thermochemistry of large systems
journal, October 2011

  • Werner, Hans-Joachim; Schütz, Martin
  • The Journal of Chemical Physics, Vol. 135, Issue 14
  • DOI: 10.1063/1.3641642

Non-iterative local second order Møller–Plesset theory
journal, January 1998


A near linear-scaling smooth local coupled cluster algorithm for electronic structure
journal, August 2006

  • Subotnik, Joseph E.; Sodt, Alex; Head-Gordon, Martin
  • The Journal of Chemical Physics, Vol. 125, Issue 7
  • DOI: 10.1063/1.2336426

Analytical energy gradients for local second-order Mo/ller–Plesset perturbation theory
journal, April 1998

  • El Azhary, Adel; Rauhut, Guntram; Pulay, Peter
  • The Journal of Chemical Physics, Vol. 108, Issue 13
  • DOI: 10.1063/1.475955

Analytical energy gradients for local second-order Møller–Plesset perturbation theory using density fitting approximations
journal, July 2004

  • Schütz, Martin; Werner, Hans-Joachim; Lindh, Roland
  • The Journal of Chemical Physics, Vol. 121, Issue 2
  • DOI: 10.1063/1.1760747

Efficient Structure Optimization with Second-Order Many-Body Perturbation Theory: The RIJCOSX-MP2 Method
journal, July 2010

  • Kossmann, Simone; Neese, Frank
  • Journal of Chemical Theory and Computation, Vol. 6, Issue 8
  • DOI: 10.1021/ct100199k

Configuration‐Interaction Calculation of H 3 and H 2
journal, February 1965

  • Edmiston, C.; Krauss, M.
  • The Journal of Chemical Physics, Vol. 42, Issue 3
  • DOI: 10.1063/1.1696050

Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method
journal, March 2009

  • Neese, Frank; Wennmohs, Frank; Hansen, Andreas
  • The Journal of Chemical Physics, Vol. 130, Issue 11
  • DOI: 10.1063/1.3086717

An efficient and near linear scaling pair natural orbital based local coupled cluster method
journal, January 2013

  • Riplinger, Christoph; Neese, Frank
  • The Journal of Chemical Physics, Vol. 138, Issue 3
  • DOI: 10.1063/1.4773581

Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory
journal, January 2016

  • Riplinger, Christoph; Pinski, Peter; Becker, Ute
  • The Journal of Chemical Physics, Vol. 144, Issue 2
  • DOI: 10.1063/1.4939030

A scaling PNO–MP2 method using a hybrid OSV–PNO approach with an iterative direct generation of OSVs
journal, September 2013


The PNO–MP2 gradient and its application to molecular geometry optimisations
journal, December 2016


Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques
journal, December 2016

  • Schmitz, Gunnar; Hättig, Christof
  • The Journal of Chemical Physics, Vol. 145, Issue 23
  • DOI: 10.1063/1.4972001

Scalable Electron Correlation Methods I.: PNO-LMP2 with Linear Scaling in the Molecular Size and Near-Inverse-Linear Scaling in the Number of Processors
journal, January 2015

  • Werner, Hans-Joachim; Knizia, Gerald; Krause, Christine
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 2
  • DOI: 10.1021/ct500725e

Scalable Electron Correlation Methods. 2. Parallel PNO-LMP2-F12 with Near Linear Scaling in the Molecular Size
journal, October 2015

  • Ma, Qianli; Werner, Hans-Joachim
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 11
  • DOI: 10.1021/acs.jctc.5b00843

Accuracy of DLPNO–CCSD(T) Method for Noncovalent Bond Dissociation Enthalpies from Coinage Metal Cation Complexes
journal, September 2015

  • Minenkov, Yury; Chermak, Edrisse; Cavallo, Luigi
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 10
  • DOI: 10.1021/acs.jctc.5b00584

Mechanism of Olefin Asymmetric Hydrogenation Catalyzed by Iridium Phosphino-Oxazoline: A Pair Natural Orbital Coupled Cluster Study
journal, February 2014

  • Sparta, Manuel; Riplinger, Christoph; Neese, Frank
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 3
  • DOI: 10.1021/ct400917j

Tensor factorizations of local second-order Møller–Plesset theory
journal, January 2011

  • Yang, Jun; Kurashige, Yuki; Manby, Frederick R.
  • The Journal of Chemical Physics, Vol. 134, Issue 4
  • DOI: 10.1063/1.3528935

The orbital-specific-virtual local coupled cluster singles and doubles method
journal, April 2012

  • Yang, Jun; Chan, Garnet Kin-Lic; Manby, Frederick R.
  • The Journal of Chemical Physics, Vol. 136, Issue 14
  • DOI: 10.1063/1.3696963

Comparison of explicitly correlated local coupled-cluster methods with various choices of virtual orbitals
journal, January 2012

  • Krause, Christine; Werner, Hans-Joachim
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 21
  • DOI: 10.1039/c2cp40231a

An explicitly correlated local coupled cluster method for calculations of large molecules close to the basis set limit
journal, October 2011

  • Adler, Thomas B.; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 135, Issue 14
  • DOI: 10.1063/1.3647565

Geminal-spanning orbitals make explicitly correlated reduced-scaling coupled-cluster methods robust, yet simple
journal, August 2014

  • Pavošević, Fabijan; Neese, Frank; Valeev, Edward F.
  • The Journal of Chemical Physics, Vol. 141, Issue 5
  • DOI: 10.1063/1.4890002

Local explicitly correlated second-order Møller–Plesset perturbation theory with pair natural orbitals
journal, August 2011

  • Tew, David P.; Helmich, Benjamin; Hättig, Christof
  • The Journal of Chemical Physics, Vol. 135, Issue 7
  • DOI: 10.1063/1.3624370

Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules
journal, February 2009

  • Adler, Thomas B.; Werner, Hans-Joachim; Manby, Frederick R.
  • The Journal of Chemical Physics, Vol. 130, Issue 5
  • DOI: 10.1063/1.3040174

Eliminating the domain error in local explicitly correlated second-order Møller–Plesset perturbation theory
journal, September 2008

  • Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 129, Issue 10
  • DOI: 10.1063/1.2982419

Local explicitly correlated coupled-cluster methods: Efficient removal of the basis set incompleteness and domain errors
journal, June 2009

  • Adler, Thomas B.; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 130, Issue 24
  • DOI: 10.1063/1.3160675

Direct calculation of electron density in density-functional theory
journal, March 1991


A density‐matrix divide‐and‐conquer approach for electronic structure calculations of large molecules
journal, October 1995

  • Yang, Weitao; Lee, Tai‐Sung
  • The Journal of Chemical Physics, Vol. 103, Issue 13
  • DOI: 10.1063/1.470549

Alternative linear-scaling methodology for the second-order Møller-Plesset perturbation calculation based on the divide-and-conquer method
journal, August 2007

  • Kobayashi, Masato; Imamura, Yutaka; Nakai, Hiromi
  • The Journal of Chemical Physics, Vol. 127, Issue 7
  • DOI: 10.1063/1.2761878

Extension of linear-scaling divide-and-conquer-based correlation method to coupled cluster theory with singles and doubles excitations
journal, July 2008

  • Kobayashi, Masato; Nakai, Hiromi
  • The Journal of Chemical Physics, Vol. 129, Issue 4
  • DOI: 10.1063/1.2956490

Fragment molecular orbital method: an approximate computational method for large molecules
journal, November 1999


Large scale FMO-MP2 calculations on a massively parallel-vector computer
journal, May 2008


Møller-Plesset perturbation theory: from small molecule methods to methods for thousands of atoms: Møller-Plesset perturbation theory
journal, May 2011

  • Cremer, Dieter
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 1, Issue 4
  • DOI: 10.1002/wcms.58

Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein–molecule interaction energy
journal, August 2003

  • Zhang, Da W.; Zhang, J. Z. H.
  • The Journal of Chemical Physics, Vol. 119, Issue 7
  • DOI: 10.1063/1.1591727

A natural linear scaling coupled-cluster method
journal, January 2004

  • Flocke, N.; Bartlett, Rodney J.
  • The Journal of Chemical Physics, Vol. 121, Issue 22
  • DOI: 10.1063/1.1811606

Approximate ab initio energies by systematic molecular fragmentation
journal, April 2005

  • Deev, Vitali; Collins, Michael A.
  • The Journal of Chemical Physics, Vol. 122, Issue 15
  • DOI: 10.1063/1.1879792

A fragment energy assembler method for Hartree-Fock calculations of large molecules
journal, April 2006

  • Li, Wei; Fang, Tao; Li, Shuhua
  • The Journal of Chemical Physics, Vol. 124, Issue 15
  • DOI: 10.1063/1.2186997

A New Algorithm for Molecular Fragmentation in Quantum Chemical Calculations
journal, July 2006

  • Bettens, Ryan P. A.; Lee, Adrian M.
  • The Journal of Physical Chemistry A, Vol. 110, Issue 28
  • DOI: 10.1021/jp062104n

The generalized molecular fractionation with conjugate caps/molecular mechanics method for direct calculation of protein energy
journal, May 2006

  • He, Xiao; Zhang, John Z. H.
  • The Journal of Chemical Physics, Vol. 124, Issue 18
  • DOI: 10.1063/1.2194535

Generalized Energy-Based Fragmentation Approach for Computing the Ground-State Energies and Properties of Large Molecules
journal, March 2007

  • Li, Wei; Li, Shuhua; Jiang, Yuansheng
  • The Journal of Physical Chemistry A, Vol. 111, Issue 11
  • DOI: 10.1021/jp067721q

Combined Fragmentation Method: A Simple Method for Fragmentation of Large Molecules
journal, January 2012

  • Le, Hai-Anh; Tan, Hwee-Jia; Ouyang, John F.
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 2
  • DOI: 10.1021/ct200783n

Fully automated implementation of the incremental scheme: Application to CCSD energies for hydrocarbons and transition metal compounds
journal, April 2007

  • Friedrich, Joachim; Hanrath, Michael; Dolg, Michael
  • The Journal of Chemical Physics, Vol. 126, Issue 15
  • DOI: 10.1063/1.2721538

Fully Automated Incremental Evaluation of MP2 and CCSD(T) Energies: Application to Water Clusters
journal, January 2009

  • Friedrich, Joachim; Dolg, Michael
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 2
  • DOI: 10.1021/ct800355e

First UHF Implementation of the Incremental Scheme for Open-Shell Systems
journal, December 2015

  • Anacker, Tony; Tew, David P.; Friedrich, Joachim
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 1
  • DOI: 10.1021/acs.jctc.5b00933

Automated incremental scheme for explicitly correlated methods
journal, April 2010

  • Friedrich, Joachim; Tew, David P.; Klopper, Wim
  • The Journal of Chemical Physics, Vol. 132, Issue 16
  • DOI: 10.1063/1.3394017

Incremental CCSD(T)(F12*)|MP2: A Black Box Method To Obtain Highly Accurate Reaction Energies
journal, November 2013

  • Friedrich, Joachim; Hänchen, Julia
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 12
  • DOI: 10.1021/ct4008074

Linear scaling local correlation approach for solving the coupled cluster equations of large systems
journal, December 2001

  • Li, Shuhua; Ma, Jing; Jiang, Yuansheng
  • Journal of Computational Chemistry, Vol. 23, Issue 2
  • DOI: 10.1002/jcc.10003

An efficient implementation of the “cluster-in-molecule” approach for local electron correlation calculations
journal, August 2006

  • Li, Shuhua; Shen, Jun; Li, Wei
  • The Journal of Chemical Physics, Vol. 125, Issue 7
  • DOI: 10.1063/1.2244566

Local correlation calculations using standard and renormalized coupled-cluster approaches
journal, September 2009

  • Li, Wei; Piecuch, Piotr; Gour, Jeffrey R.
  • The Journal of Chemical Physics, Vol. 131, Issue 11
  • DOI: 10.1063/1.3218842

A general-order local coupled-cluster method based on the cluster-in-molecule approach
journal, September 2011

  • Rolik, Zoltán; Kállay, Mihály
  • The Journal of Chemical Physics, Vol. 135, Issue 10
  • DOI: 10.1063/1.3632085

A refined cluster-in-molecule local correlation approach for predicting the relative energies of large systems
journal, January 2012

  • Li, Wei; Guo, Yang; Li, Shuhua
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 21
  • DOI: 10.1039/c2cp23916g

An efficient linear-scaling CCSD(T) method based on local natural orbitals
journal, September 2013

  • Rolik, Zoltán; Szegedy, Lóránt; Ladjánszki, István
  • The Journal of Chemical Physics, Vol. 139, Issue 9
  • DOI: 10.1063/1.4819401

Improved Cluster-in-Molecule Local Correlation Approach for Electron Correlation Calculation of Large Systems
journal, June 2014

  • Guo, Yang; Li, Wei; Li, Shuhua
  • The Journal of Physical Chemistry A, Vol. 118, Issue 39
  • DOI: 10.1021/jp501976x

Combined Fragment Molecular Orbital Cluster in Molecule Approach to Massively Parallel Electron Correlation Calculations for Large Systems.
journal, April 2015

  • Findlater, Alexander D.; Zahariev, Federico; Gordon, Mark S.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 15
  • DOI: 10.1021/jp509266g

Cluster-in-molecule local correlation method for post-Hartree–Fock calculations of large systems
journal, February 2016


An Integral-Direct Linear-Scaling Second-Order Møller–Plesset Approach
journal, September 2016

  • Nagy, Péter R.; Samu, Gyula; Kállay, Mihály
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 10
  • DOI: 10.1021/acs.jctc.6b00732

A fast intrinsic localization procedure applicable for a b i n i t i o and semiempirical linear combination of atomic orbital wave functions
journal, May 1989

  • Pipek, János; Mezey, Paul G.
  • The Journal of Chemical Physics, Vol. 90, Issue 9
  • DOI: 10.1063/1.456588

Local orbitals by minimizing powers of the orbital variance
journal, May 2011

  • Jansík, Branislav; Høst, Stinne; Kristensen, Kasper
  • The Journal of Chemical Physics, Vol. 134, Issue 19
  • DOI: 10.1063/1.3590361

Orbital localization using fourth central moment minimization
journal, December 2012

  • Høyvik, Ida-Marie; Jansik, Branislav; Jørgensen, Poul
  • The Journal of Chemical Physics, Vol. 137, Issue 22
  • DOI: 10.1063/1.4769866

Trust Region Minimization of Orbital Localization Functions
journal, August 2012

  • Høyvik, Ida-Marie; Jansik, Branislav; Jørgensen, Poul
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 9
  • DOI: 10.1021/ct300473g

A perspective on the localizability of Hartree–Fock orbitals
journal, November 2013

  • Høyvik, Ida-Marie; Kristensen, Kasper; Kjærgaard, Thomas
  • Theoretical Chemistry Accounts, Vol. 133, Issue 1
  • DOI: 10.1007/s00214-013-1417-x

Characterization and Generation of Local Occupied and Virtual Hartree–Fock Orbitals
journal, February 2016


The Dalton quantum chemistry program system: The Dalton program
journal, September 2013

  • Aidas, Kestutis; Angeli, Celestino; Bak, Keld L.
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 4, Issue 3
  • DOI: 10.1002/wcms.1172

Maximum locality in occupied and virtual orbital spaces using a least-change strategy
journal, September 2009

  • Ziółkowski, Marcin; Jansík, Branislav; Jørgensen, Poul
  • The Journal of Chemical Physics, Vol. 131, Issue 12
  • DOI: 10.1063/1.3230604

Electrostatic Potential of Insulin: Exploring the Limitations of Density Functional Theory and Force Field Methods
journal, August 2013

  • Jakobsen, Sofie; Kristensen, Kasper; Jensen, Frank
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 9
  • DOI: 10.1021/ct400452f

Accuracy of Protein Embedding Potentials: An Analysis in Terms of Electrostatic Potentials
journal, March 2015

  • Olsen, Jógvan Magnus Haugaard; List, Nanna Holmgaard; Kristensen, Kasper
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 4
  • DOI: 10.1021/acs.jctc.5b00078

An efficient density-functional-theory force evaluation for large molecular systems
journal, July 2010

  • Reine, Simen; Krapp, Andreas; Iozzi, Maria Francesca
  • The Journal of Chemical Physics, Vol. 133, Issue 4
  • DOI: 10.1063/1.3459061