skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: First-principles Green-Kubo method for thermal conductivity calculations

Abstract

We present a first-principles approach to calculate the phonon thermal conductivity based on the Green-Kubo formalism. In this approach, the density functional theory energy is distributed to each atom, and a two-step method in the molecular dynamics is introduced to avoid the atomic position R wrapping problem in a periodic system when the heat current is calculated. We show that this first-principles Green-Kubo approach is particularly suitable for disordered systems like amorphous and liquid, where the thermal conductivities are small due to strong phonon scattering but difficult to be calculated using anharmonic interaction energy. We have applied our method to liquid Ar, liquid Si, and amorphous Si. The calculated thermal conductivities agree well with previous theoretical and experimental results. We have also compared our method to previous works combining first-principles simulations with the Green-Kubo formalism.

Authors:
 [1];  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
Publication Date:
Research Org.:
Univ. of California, Oakland, CA (United States); Oak Ridge National Laboratory, Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1565608
DOE Contract Number:  
AC02-05CH11231
Resource Type:
Journal Article
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 96; Journal Issue: 2; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
Materials Science; Physics

Citation Formats

Kang, Jun, and Wang, Lin-Wang. First-principles Green-Kubo method for thermal conductivity calculations. United States: N. p., 2017. Web. doi:10.1103/physrevb.96.020302.
Kang, Jun, & Wang, Lin-Wang. First-principles Green-Kubo method for thermal conductivity calculations. United States. doi:10.1103/physrevb.96.020302.
Kang, Jun, and Wang, Lin-Wang. Sat . "First-principles Green-Kubo method for thermal conductivity calculations". United States. doi:10.1103/physrevb.96.020302.
@article{osti_1565608,
title = {First-principles Green-Kubo method for thermal conductivity calculations},
author = {Kang, Jun and Wang, Lin-Wang},
abstractNote = {We present a first-principles approach to calculate the phonon thermal conductivity based on the Green-Kubo formalism. In this approach, the density functional theory energy is distributed to each atom, and a two-step method in the molecular dynamics is introduced to avoid the atomic position R wrapping problem in a periodic system when the heat current is calculated. We show that this first-principles Green-Kubo approach is particularly suitable for disordered systems like amorphous and liquid, where the thermal conductivities are small due to strong phonon scattering but difficult to be calculated using anharmonic interaction energy. We have applied our method to liquid Ar, liquid Si, and amorphous Si. The calculated thermal conductivities agree well with previous theoretical and experimental results. We have also compared our method to previous works combining first-principles simulations with the Green-Kubo formalism.},
doi = {10.1103/physrevb.96.020302},
journal = {Physical Review B},
issn = {2469-9950},
number = 2,
volume = 96,
place = {United States},
year = {2017},
month = {7}
}

Works referenced in this record:

Intrinsic lattice thermal conductivity of semiconductors from first principles
journal, December 2007

  • Broido, D. A.; Malorny, M.; Birner, G.
  • Applied Physics Letters, Vol. 91, Issue 23
  • DOI: 10.1063/1.2822891

Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations
journal, October 2014


Stationary nonequilibrium states by molecular dynamics. Fourier's law
journal, May 1982

  • Tenenbaum, Alexander; Ciccotti, Giovanni; Gallico, Renato
  • Physical Review A, Vol. 25, Issue 5
  • DOI: 10.1103/PhysRevA.25.2778

Comparison of atomic-level simulation methods for computing thermal conductivity
journal, April 2002

  • Schelling, Patrick K.; Phillpot, Simon R.; Keblinski, Pawel
  • Physical Review B, Vol. 65, Issue 14
  • DOI: 10.1103/PhysRevB.65.144306

Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids
journal, March 1954

  • Green, Melville S.
  • The Journal of Chemical Physics, Vol. 22, Issue 3
  • DOI: 10.1063/1.1740082

Statistical-Mechanical Theory of Irreversible Processes. II. Response to Thermal Disturbance
journal, November 1957

  • Kubo, Ryogo; Yokota, Mario; Nakajima, Sadao
  • Journal of the Physical Society of Japan, Vol. 12, Issue 11
  • DOI: 10.1143/JPSJ.12.1203

Predicting Phonon Properties from Equilibrium Molecular Dynamics Simulations
journal, January 2014


Microscopic theory and quantum simulation of atomic heat transport
journal, October 2015

  • Marcolongo, Aris; Umari, Paolo; Baroni, Stefano
  • Nature Physics, Vol. 12, Issue 1
  • DOI: 10.1038/nphys3509

Phonons and related crystal properties from density-functional perturbation theory
journal, July 2001

  • Baroni, Stefano; de Gironcoli, Stefano; Dal Corso, Andrea
  • Reviews of Modern Physics, Vol. 73, Issue 2
  • DOI: 10.1103/RevModPhys.73.515

Ab Initio Green-Kubo Approach for the Thermal Conductivity of Solids
journal, April 2017


Comparison of molecular dynamics methods and interatomic potentials for calculating the thermal conductivity of silicon
journal, December 2012

  • Howell, P. C.
  • The Journal of Chemical Physics, Vol. 137, Issue 22
  • DOI: 10.1063/1.4767516

Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations
journal, September 2015


Thermal conductivity decomposition and analysis using molecular dynamics simulations. Part I. Lennard-Jones argon
journal, April 2004


Energy density in density functional theory: Application to crystalline defects and surfaces
journal, March 2011


Mask-function real-space implementations of nonlocal pseudopotentials
journal, November 2001


Thermal conductivity of solid argon from molecular dynamics simulations
journal, February 2004

  • Tretiakov, Konstantin V.; Scandolo, Sandro
  • The Journal of Chemical Physics, Vol. 120, Issue 8
  • DOI: 10.1063/1.1642611

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


ReaxFF:  A Reactive Force Field for Hydrocarbons
journal, October 2001

  • van Duin, Adri C. T.; Dasgupta, Siddharth; Lorant, Francois
  • The Journal of Physical Chemistry A, Vol. 105, Issue 41
  • DOI: 10.1021/jp004368u

Structure of evaporated pure amorphous silicon: Neutron-diffraction and reverse Monte Carlo investigations
journal, September 1993


Thermal conductivity of the Lennard‐Jones liquid by molecular dynamics calculations
journal, June 1987

  • Vogelsang, R.; Hoheisel, C.; Ciccotti, G.
  • The Journal of Chemical Physics, Vol. 86, Issue 11
  • DOI: 10.1063/1.452424

Ensemble averaging vs. time averaging in molecular dynamics simulations of thermal conductivity
journal, January 2015

  • Gordiz, Kiarash; Singh, David J.; Henry, Asegun
  • Journal of Applied Physics, Vol. 117, Issue 4
  • DOI: 10.1063/1.4906957

Elastic quantum transport calculations using auxiliary periodic boundary conditions
journal, July 2005


Charge-Density Patching Method for Unconventional Semiconductor Binary Systems
journal, June 2002


Theory of polarization of crystalline solids
journal, January 1993


Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory
journal, June 1999


Ground State of the Electron Gas by a Stochastic Method
journal, August 1980


Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point
journal, May 1964


Thermal Conductivity and Specific Heat of Thin-Film Amorphous Silicon
journal, February 2006


Thermal conductivity of thin films: Measurements and understanding
journal, May 1989

  • Cahill, David G.; Fischer, Henry E.; Klitsner, Tom
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 7, Issue 3
  • DOI: 10.1116/1.576265

Thermal Conductivity of Amorphous Silicon
journal, May 1996

  • Wada, Hiroshi; Kamijoh, Takeshi
  • Japanese Journal of Applied Physics, Vol. 35, Issue Part 2, No. 5B
  • DOI: 10.1143/JJAP.35.L648

Thermal conductivity accumulation in amorphous silica and amorphous silicon
journal, April 2014


Molecular-dynamics simulation of thermal conductivity in amorphous silicon
journal, March 1991


Thermal Conductivity of Glasses: Theory and Application to Amorphous Si
journal, February 1989


Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field
journal, February 2007

  • Kobatake, Hidekazu; Fukuyama, Hiroyuki; Minato, Izuru
  • Applied Physics Letters, Vol. 90, Issue 9
  • DOI: 10.1063/1.2710220

Thermal conductivities of silicon and germanium in solid and liquid states measured by non-stationary hot wire method with silica coated probe
journal, January 2002