skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlling 3-D Morphology of Ni-Fe-Based Nanocatalysts for Oxygen Evolution Reaction

Abstract

Controlling the 3-D morphology of nanocatalysts is one of the underexplored but important approaches for improving the sluggish kinetics of the oxygen evolution reaction (OER) in water electrolysis. This work reports a scalable, oil-based method based on thermal decomposition of organometallic complexes to yield highly uniform Ni–Fe-based nanocatalysts with a well-defined morphology (i.e. Ni–Fe core–shell, Ni/Fe alloy, and Fe–Ni core–shell). Transmission electron microscopy reveals their morphology and composition to be NiOx–FeOx/NiOx core-mixed shell, NiOx/FeOx alloy, and FeOx–NiOx core–shell. X-ray techniques resolve the electronic structures of the bulk and are supported by electron energy loss spectroscopy analysis of individual nanoparticles. These results suggest that the crystal structure of Ni is most likely to contain α-Ni(OH)2 and that the chemical environment of Fe is variable, depending on the morphology of the nanoparticle. The Ni diffusion from the amorphous Ni-based core to the iron oxide shell makes the NiOx–NiOx/FeOx core-mixed shell structure the most active and the most stable nanocatalyst, which outperforms the comparison NiOx/FeOx alloy nanoparticles expected to be active for the OER. This study suggests that the chemical environment of the mixed NiOx/FeOx alloy composition is important to achieve high electrocatalytic activity for the OER and that the 3-D morphology playsmore » a key role in the optimization of the electrocatalytic activity and stability of the nanocatalyst for the OER.« less

Authors:
; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Office of Science - Office of Basic Energy Sciences - Materials Sciences and Engineering Division
OSTI Identifier:
1559044
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article
Journal Name:
Nanoscale
Additional Journal Information:
Journal Volume: 11; Journal Issue: 17
Country of Publication:
United States
Language:
English
Subject:
Nanocatalysts; oxygen evolution reation

Citation Formats

Manso, Ryan H, Acharya, Prashant, Deng, Shiqing, Crane, Cameron C., Reinhart, Benjamin, Lee, Sungsik, Tong, Xiao, Nykypanchuk, Dmytro, Zhu, Jing, Zhu, Yimei, Greenlee, Lauren F., and Chen, Jingyi. Controlling 3-D Morphology of Ni-Fe-Based Nanocatalysts for Oxygen Evolution Reaction. United States: N. p., 2019. Web. doi:10.1039/C8NR10138H.
Manso, Ryan H, Acharya, Prashant, Deng, Shiqing, Crane, Cameron C., Reinhart, Benjamin, Lee, Sungsik, Tong, Xiao, Nykypanchuk, Dmytro, Zhu, Jing, Zhu, Yimei, Greenlee, Lauren F., & Chen, Jingyi. Controlling 3-D Morphology of Ni-Fe-Based Nanocatalysts for Oxygen Evolution Reaction. United States. doi:10.1039/C8NR10138H.
Manso, Ryan H, Acharya, Prashant, Deng, Shiqing, Crane, Cameron C., Reinhart, Benjamin, Lee, Sungsik, Tong, Xiao, Nykypanchuk, Dmytro, Zhu, Jing, Zhu, Yimei, Greenlee, Lauren F., and Chen, Jingyi. Tue . "Controlling 3-D Morphology of Ni-Fe-Based Nanocatalysts for Oxygen Evolution Reaction". United States. doi:10.1039/C8NR10138H.
@article{osti_1559044,
title = {Controlling 3-D Morphology of Ni-Fe-Based Nanocatalysts for Oxygen Evolution Reaction},
author = {Manso, Ryan H and Acharya, Prashant and Deng, Shiqing and Crane, Cameron C. and Reinhart, Benjamin and Lee, Sungsik and Tong, Xiao and Nykypanchuk, Dmytro and Zhu, Jing and Zhu, Yimei and Greenlee, Lauren F. and Chen, Jingyi},
abstractNote = {Controlling the 3-D morphology of nanocatalysts is one of the underexplored but important approaches for improving the sluggish kinetics of the oxygen evolution reaction (OER) in water electrolysis. This work reports a scalable, oil-based method based on thermal decomposition of organometallic complexes to yield highly uniform Ni–Fe-based nanocatalysts with a well-defined morphology (i.e. Ni–Fe core–shell, Ni/Fe alloy, and Fe–Ni core–shell). Transmission electron microscopy reveals their morphology and composition to be NiOx–FeOx/NiOx core-mixed shell, NiOx/FeOx alloy, and FeOx–NiOx core–shell. X-ray techniques resolve the electronic structures of the bulk and are supported by electron energy loss spectroscopy analysis of individual nanoparticles. These results suggest that the crystal structure of Ni is most likely to contain α-Ni(OH)2 and that the chemical environment of Fe is variable, depending on the morphology of the nanoparticle. The Ni diffusion from the amorphous Ni-based core to the iron oxide shell makes the NiOx–NiOx/FeOx core-mixed shell structure the most active and the most stable nanocatalyst, which outperforms the comparison NiOx/FeOx alloy nanoparticles expected to be active for the OER. This study suggests that the chemical environment of the mixed NiOx/FeOx alloy composition is important to achieve high electrocatalytic activity for the OER and that the 3-D morphology plays a key role in the optimization of the electrocatalytic activity and stability of the nanocatalyst for the OER.},
doi = {10.1039/C8NR10138H},
journal = {Nanoscale},
number = 17,
volume = 11,
place = {United States},
year = {2019},
month = {5}
}

Works referenced in this record:

Recent progress in alkaline water electrolysis for hydrogen production and applications
journal, June 2010


A comprehensive review on PEM water electrolysis
journal, April 2013

  • Carmo, Marcelo; Fritz, David L.; Mergel, Jürgen
  • International Journal of Hydrogen Energy, Vol. 38, Issue 12, p. 4901-4934
  • DOI: 10.1016/j.ijhydene.2013.01.151

Electrocatalytic Oxygen Evolution Reaction in Acidic Environments - Reaction Mechanisms and Catalysts
journal, October 2016

  • Reier, Tobias; Nong, Hong Nhan; Teschner, Detre
  • Advanced Energy Materials, Vol. 7, Issue 1
  • DOI: 10.1002/aenm.201601275

Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core-shell nanocatalysts
journal, June 2018


Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials
journal, July 2012

  • Reier, Tobias; Oezaslan, Mehtap; Strasser, Peter
  • ACS Catalysis, Vol. 2, Issue 8
  • DOI: 10.1021/cs3003098

Synthesis and Activities of Rutile IrO 2 and RuO 2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions
journal, January 2012

  • Lee, Youngmin; Suntivich, Jin; May, Kevin J.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 3
  • DOI: 10.1021/jz2016507

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction
journal, October 2013

  • McCrory, Charles C. L.; Jung, Suho; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 135, Issue 45
  • DOI: 10.1021/ja407115p

Electrocatalytic properties of transition metal oxides for oxygen evolution reaction
journal, May 1986


Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
journal, March 2011

  • Man, Isabela C.; Su, Hai‐Yan; Calle‐Vallejo, Federico
  • ChemCatChem, Vol. 3, Issue 7
  • DOI: 10.1002/cctc.201000397

Oxygen Evolution Reaction Electrocatalysis on Transition Metal Oxides and (Oxy)hydroxides: Activity Trends and Design Principles
journal, October 2015


Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction
journal, January 2014

  • Fabbri, E.; Habereder, A.; Waltar, K.
  • Catal. Sci. Technol., Vol. 4, Issue 11
  • DOI: 10.1039/C4CY00669K

Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction
journal, January 2018

  • Kim, Ju Seong; Kim, Byunghoon; Kim, Hyunah
  • Advanced Energy Materials, Vol. 8, Issue 11
  • DOI: 10.1002/aenm.201702774

Revised Oxygen Evolution Reaction Activity Trends for First-Row Transition-Metal (Oxy)hydroxides in Alkaline Media
journal, August 2015

  • Burke, Michaela S.; Zou, Shihui; Enman, Lisa J.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 18
  • DOI: 10.1021/acs.jpclett.5b01650

A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts
journal, November 2014


NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes
journal, July 2016


Nickel Oxides-Relation Between Electrochemical and Foreign Ion Content
journal, May 1952

  • Tichenor, Robert L.
  • Industrial & Engineering Chemistry, Vol. 44, Issue 5
  • DOI: 10.1021/ie50509a022

The effect of ferric ions on the behaviour of a nickelous hydroxide electrode
journal, March 1984

  • Młynarek, G.; Paszkiewicz, M.; Radniecka, A.
  • Journal of Applied Electrochemistry, Vol. 14, Issue 2
  • DOI: 10.1007/BF00618733

The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes
journal, January 1987

  • Corrigan, Dennis A.
  • Journal of The Electrochemical Society, Vol. 134, Issue 2
  • DOI: 10.1149/1.2100463

Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation
journal, April 2014

  • Trotochaud, Lena; Young, Samantha L.; Ranney, James K.
  • Journal of the American Chemical Society, Vol. 136, Issue 18
  • DOI: 10.1021/ja502379c

Role of Catalyst Preparation on the Electrocatalytic Activity of Ni 1– x Fe x OOH for the Oxygen Evolution Reaction
journal, August 2015

  • Klaus, Shannon; Louie, Mary W.; Trotochaud, Lena
  • The Journal of Physical Chemistry C, Vol. 119, Issue 32
  • DOI: 10.1021/acs.jpcc.5b04776

Surface Interrogation Scanning Electrochemical Microscopy of Ni 1– x Fe x OOH (0 < x < 0.27) Oxygen Evolving Catalyst: Kinetics of the “fast” Iron Sites
journal, December 2015

  • Ahn, Hyun S.; Bard, Allen J.
  • Journal of the American Chemical Society, Vol. 138, Issue 1
  • DOI: 10.1021/jacs.5b10977

Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni–Fe Oxide Water Splitting Electrocatalysts
journal, April 2016

  • Görlin, Mikaela; Chernev, Petko; Ferreira de Araújo, Jorge
  • Journal of the American Chemical Society, Vol. 138, Issue 17
  • DOI: 10.1021/jacs.6b00332

Tracking Catalyst Redox States and Reaction Dynamics in Ni–Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH
journal, January 2017

  • Görlin, Mikaela; Ferreira de Araújo, Jorge; Schmies, Henrike
  • Journal of the American Chemical Society, Vol. 139, Issue 5
  • DOI: 10.1021/jacs.6b12250

Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films
journal, January 2017

  • Li, Nancy; Bediako, D. Kwabena; Hadt, Ryan G.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 7
  • DOI: 10.1073/pnas.1620787114

Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity
journal, August 2017

  • Stevens, Michaela Burke; Trang, Christina D. M.; Enman, Lisa J.
  • Journal of the American Chemical Society, Vol. 139, Issue 33
  • DOI: 10.1021/jacs.7b07117

In-situ Moessbauer study of redox processes in a composite hydroxide of iron and nickel
journal, September 1987

  • Corrigan, Dennis A.; Conell, Robert S.; Fierro, Cristian A.
  • The Journal of Physical Chemistry, Vol. 91, Issue 19
  • DOI: 10.1021/j100303a024

In Situ [sup 57]Fe Mössbauer Spectroscopy Study of the Electrochemical Behavior of an Iron-Substituted Nickel Hydroxide Electrode
journal, January 1996

  • Guerlou-Demourgues, L.
  • Journal of The Electrochemical Society, Vol. 143, Issue 10
  • DOI: 10.1149/1.1837168

Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe 4+ by Mössbauer Spectroscopy
journal, November 2015

  • Chen, Jamie Y. C.; Dang, Lianna; Liang, Hanfeng
  • Journal of the American Chemical Society, Vol. 137, Issue 48
  • DOI: 10.1021/jacs.5b10699

An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen
journal, August 2013

  • Louie, Mary W.; Bell, Alexis T.
  • Journal of the American Chemical Society, Vol. 135, Issue 33
  • DOI: 10.1021/ja405351s

Effects of Fe Electrolyte Impurities on Ni(OH) 2 /NiOOH Structure and Oxygen Evolution Activity
journal, March 2015

  • Klaus, Shannon; Cai, Yun; Louie, Mary W.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 13
  • DOI: 10.1021/acs.jpcc.5b00105

In situ x-ray absorption fine structure studies of foreign metal ions in nickel hydrous oxide electrodes in alkaline electrolytes
journal, October 1994

  • Kim, Sunghyun; Tryk, Donald A.; Antonio, Mark R.
  • The Journal of Physical Chemistry, Vol. 98, Issue 40
  • DOI: 10.1021/j100091a049

X-ray Absorption Spectroscopy Studies of the Local Atomic and Electronic Structure of Iron Incorporated into Electrodeposited Hydrous Nickel Oxide Films
journal, May 2000

  • Balasubramanian, M.; Melendres, C. A.; Mini, S.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 18
  • DOI: 10.1021/jp9921710

Spectroscopic Characterization of Mixed Fe–Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Electrolytes
journal, July 2012

  • Landon, James; Demeter, Ethan; İnoğlu, Nilay
  • ACS Catalysis, Vol. 2, Issue 8
  • DOI: 10.1021/cs3002644

In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity
journal, November 2015

  • Trześniewski, Bartek J.; Diaz-Morales, Oscar; Vermaas, David A.
  • Journal of the American Chemical Society, Vol. 137, Issue 48
  • DOI: 10.1021/jacs.5b06814

Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting
journal, January 2015

  • Friebel, Daniel; Louie, Mary W.; Bajdich, Michal
  • Journal of the American Chemical Society, Vol. 137, Issue 3
  • DOI: 10.1021/ja511559d

Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction
journal, December 2015


Nickel-iron catalysts for electrochemical water oxidation – redox synergism investigated by in situ X-ray spectroscopy with millisecond time resolution
journal, January 2018

  • González-Flores, Diego; Klingan, Katharina; Chernev, Petko
  • Sustainable Energy & Fuels, Vol. 2, Issue 9
  • DOI: 10.1039/C8SE00114F

Geometric distortions in nickel (oxy)hydroxide electrocatalysts by redox inactive iron ions
journal, January 2018

  • Smith, Rodney D. L.; Pasquini, Chiara; Loos, Stefan
  • Energy & Environmental Science, Vol. 11, Issue 9
  • DOI: 10.1039/C8EE01063C

Mechanism and Activity of Water Oxidation on Selected Surfaces of Pure and Fe-Doped NiO x
journal, March 2014

  • Li, Ye-Fei; Selloni, Annabella
  • ACS Catalysis, Vol. 4, Issue 4
  • DOI: 10.1021/cs401245q

Electronic Structure of the (Undoped and Fe-Doped) NiOOH O 2 Evolution Electrocatalyst
journal, August 2016


Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction
journal, May 2018

  • Xiao, Hai; Shin, Hyeyoung; Goddard, William A.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 23
  • DOI: 10.1073/pnas.1722034115

A Reliable Aerosol-Spray-Assisted Approach to Produce and Optimize Amorphous Metal Oxide Catalysts for Electrochemical Water Splitting
journal, June 2014

  • Kuai, Long; Geng, Jing; Chen, Changyu
  • Angewandte Chemie International Edition, Vol. 53, Issue 29
  • DOI: 10.1002/anie.201404208

Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis
journal, July 2014


Structural Evolution of Metal (Oxy)hydroxide Nanosheets during the Oxygen Evolution Reaction
journal, April 2018

  • Dette, Christian; Hurst, Michael R.; Deng, Jiang
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 6
  • DOI: 10.1021/acsami.8b02796

Multi-Component Fe–Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions under Alkaline Conditions
journal, December 2016

  • Candelaria, Stephanie L.; Bedford, Nicholas M.; Woehl, Taylor J.
  • ACS Catalysis, Vol. 7, Issue 1
  • DOI: 10.1021/acscatal.6b02552

Nickel hydroxides and related materials: a review of their structures, synthesis and properties
journal, February 2015

  • Hall, David S.; Lockwood, David J.; Bock, Christina
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 471, Issue 2174
  • DOI: 10.1098/rspa.2014.0792

Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst
journal, May 2014

  • Gao, Minrui; Sheng, Wenchao; Zhuang, Zhongbin
  • Journal of the American Chemical Society, Vol. 136, Issue 19
  • DOI: 10.1021/ja502128j

Monodisperse MFe 2 O 4 (M = Fe, Co, Mn) Nanoparticles
journal, January 2004

  • Sun, Shouheng; Zeng, Hao; Robinson, David B.
  • Journal of the American Chemical Society, Vol. 126, Issue 1
  • DOI: 10.1021/ja0380852

Synthesis of Pd/Fe 3 O 4 Hybrid Nanocatalysts with Controllable Interface and Enhanced Catalytic Activities for CO Oxidation
journal, June 2012

  • Chen, Shutang; Si, Rui; Taylor, Eric
  • The Journal of Physical Chemistry C, Vol. 116, Issue 23
  • DOI: 10.1021/jp3036204

Compact Ag@Fe3O4 Core-shell Nanoparticles by Means of Single-step Thermal Decomposition Reaction
journal, October 2014

  • Brollo, Maria Eugênia F.; López-Ruiz, Román; Muraca, Diego
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06839

Hydrogen adsorption on two catalysts for the ortho- to parahydrogen conversion: Cr-doped silica and ferric oxide gel
journal, January 2016

  • Hartl, Monika; Gillis, Robert Chad; Daemen, Luke
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 26
  • DOI: 10.1039/C6CP01154C

Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: promotion of activity by a redox-inert metal ion
journal, January 2014

  • Chen, Jamie Y. C.; Miller, Jeffrey T.; Gerken, James B.
  • Energy & Environmental Science, Vol. 7, Issue 4
  • DOI: 10.1039/c3ee43811b

Chemical effects at metal/oxide interfaces studied by x-ray-absorption spectroscopy
journal, November 2001


Correlation between electronic structure and magnetic properties of Fe-doped ZnO films
journal, June 2012

  • Chen, Tiexin; Cao, Liang; Zhang, Wenhua
  • Journal of Applied Physics, Vol. 111, Issue 12
  • DOI: 10.1063/1.4730605

Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L 23 electron energy-loss near-edge spectra
journal, April 2002


Oxidation state and chemical shift investigation in transition metal oxides by EELS
journal, May 2012


Magnetic circular dichroism in Fe 2 p resonant photoemission of magnetite
journal, February 2004


Direct imaging of electron transfer and its influence on superconducting pairing at FeSe/SrTiO 3 interface
journal, March 2018


Oxygen Evolution Catalyzed by Nickel–Iron Oxide Nanocrystals with a Nonequilibrium Phase
journal, August 2015

  • Bau, Jeremy A.; Luber, Erik J.; Buriak, Jillian M.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 35
  • DOI: 10.1021/acsami.5b05594

Accounting for the Dynamic Oxidative Behavior of Nickel Anodes
journal, January 2016

  • Smith, Rodney D. L.; Berlinguette, Curtis P.
  • Journal of the American Chemical Society, Vol. 138, Issue 5
  • DOI: 10.1021/jacs.5b10728