skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Conformational Equilibria of Multimodal Chromatography Ligands in Water and Bound to Protein Surfaces

Journal Article · · Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry

Multimodal chromatography uses small ligands with multiple modes of interaction, e.g., charged, hydrophobic or hydrogen bonding, to separate proteins from complex mixtures. The mechanism by which multimodal ligands interact with proteins is expected to be affected by ligand conformations, among other factors. In this report, we determine conformational equilibria of two commercially used multimodal cation exchange ligands, Capto MMC and Nuvia cPrime, in a range of solvents, a Lennard-Jones (LJ) liquid, ethanol, and water, using molecular dynamics (MD) simulations. By mapping ligand conformations onto two key torsion angles, ω and φ, in these solvents and in low and high dielectric media, we quantify the relative importance of intramolecular and solvent-mediated interactions. In a high dielectric medium, Capto MMC preferentially samples three conformations, which are stabilized by a combination of an intramolecular torsion potential (on ω) and LJ interactions. In an LJ liquid, solvent molecules compete with intramolecular interactions while simultaneously providing an osmotic force, stabilizing both closer and farther distances between ligand sites. This has the overall result of “flattening out” the conformational landscape. Interestingly, in ethanol and water, hydrogen bonding among the amide hydrogen and solvent molecules stabilizes two additional conformations of Capto MMC in which ω takes on less favorable cis-like configurations. MD simulations of ligands in free solution with three therapeutic antibody fragments show that ligand conformational equilibria remain effectively unchanged upon binding to proteins. Although, there is 20–30% dehydration of the overall ligand upon binding, the hydrogen-bonding sites are dehydrated to a much smaller extent, particularly in cis-like configurations. Conformational preferences of Nuvia cPrime are similar to that of Capto MMC, except for the effect of symmetry arising from the absence of an alkyl thiol tail. Characterizing the conformational equilibria of these two ligands in free solution and bound to a protein provides a foundation for developing a mechanistic understanding of protein–multimodal ligand interactions.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA); National Science Foundation (NSF)
Grant/Contract Number:
AC52-07NA27344; CBET-1704745
OSTI ID:
1558331
Report Number(s):
LLNL-JRNL-767864; 955588; TRN: US2000191
Journal Information:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry, Vol. 123, Issue 23; ISSN 1520-6106
Publisher:
American Chemical SocietyCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Similar Records

Behavior of Water Near Multimodal Chromatography Ligands and Its Consequences for Modulating Protein–Ligand Interactions
Journal Article · Mon Jun 07 00:00:00 EDT 2021 · Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry · OSTI ID:1558331

The Role of Ligand–Ligand Interactions in Multimodal Ligand Conformational Equilibria and Surface Pattern Formation
Journal Article · Fri Jun 26 00:00:00 EDT 2020 · Langmuir · OSTI ID:1558331

Dehydration-Driven Solvent Exposure of Hydrophobic Surfaces as a Driving Force in Peptide Folding
Journal Article · Sat Sep 01 00:00:00 EDT 2007 · Proceedings of the National Academy of Sciences of the United States of America · OSTI ID:1558331

Related Subjects