skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SMART Cables for Observing the Global Ocean: Science and Implementation

Abstract

The ocean is key to understanding societal threats including climate change, sea level rise, ocean warming, tsunamis, and earthquakes. Because the ocean is difficult and costly to monitor, we lack fundamental data needed to adequately model, understand, and address these threats. One solution is to integrate sensors into future undersea telecommunications cables. This is the mission of the SMART subsea cables initiative (Science Monitoring And Reliable Telecommunications). SMART sensors would “piggyback” on the power and communications infrastructure of a million kilometers of undersea fiber optic cable and thousands of repeaters, creating the potential for seafloor-based global ocean observing at a modest incremental cost. Initial sensors would measure temperature, pressure, and seismic acceleration. The resulting data would address two critical scientific and societal issues: the long-term need for sustained climate-quality data from the under-sampled ocean (e.g., deep ocean temperature, sea level, and circulation), and the near-term need for improvements to global tsunami warning networks. A Joint Task Force (JTF) led by three UN agencies (ITU/WMO/UNESCO-IOC) is working to bring this initiative to fruition. This paper explores the ocean science and early warning improvements available from SMART cable data, and the societal, technological, and financial elements of realizing such a global network.more » Simulations show that deep ocean temperature and pressure measurements can improve estimates of ocean circulation and heat content, and cable-based pressure and seismic-acceleration sensors can improve tsunami warning times and earthquake parameters. The technology of integrating these sensors into fiber optic cables is discussed, addressing sea and land-based elements plus delivery of real-time open data products to end users. The science and business case for SMART cables is evaluated. SMART cables have been endorsed by major ocean science organizations, and JTF is working with cable suppliers and sponsors, multilateral development banks and end users to incorporate SMART capabilities into future cable projects. By investing now, we can build up a global ocean network of long-lived SMART cable sensors, creating a transformative addition to the Global Ocean Observing System.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [1];  [7];  [8];  [9];  [10];  [11];  [1];  [12];  [13];  [14]; ORCiD logo [15];  [16];  [10];  [17] more »;  [18];  [1];  [19];  [19];  [6];  [20] « less
  1. University of Hawaii at Manoa
  2. Michigan State University
  3. LEGOS
  4. University of Victoria
  5. SIN Medida Ltd.
  6. Pacific Tsunami Warning Center
  7. Alcatel Submarine Networks
  8. University of Miami
  9. Pacific Marine Environmental Laboratory, NOAA
  10. Jet Propulsion Laboratory
  11. Ocean Specialists, Inc.
  12. Norwegian Meteorological Institute
  13. DRG Undersea Consulting, Inc.
  14. GHD Consulting
  15. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  16. International Telecommunication Union
  17. Free University of Berlin
  18. Thomas Strategies
  19. Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences
  20. ITU/WMO/UNESCO/IOC
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
Contributing Org.:
The Joint Task Force for SMART Cables
OSTI Identifier:
1558213
Report Number(s):
LA-UR-18-31124
Journal ID: ISSN 2296-7745
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Frontiers in Marine Science
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2296-7745
Publisher:
Frontiers Research Foundation
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Geophysical sensors; telecommunications cables; tsunami warning; earthquake observations; trans-oceanic network

Citation Formats

Howe, Bruce M., Arbic, Brian K., Aucan, Jerome, Barnes, Chris, Bayliff, Nigel, Becker, Nathan, Butler, Rhett, Doyle, Laurie, Elipot, Shane, Johnson, Gregory C., Landerer, Felix, Lentz, Stephen, Luther, Douglas S., Muller, Malte, Mariano, John, Panayotou, Kate, Rowe, Charlotte Anne, Scholl, Reinhard, Song, Y. Tony, Thomas, Maik, Thomas, Preston N., Thompson, Philip, Tilmann, Frederik, Weber, Tobias, Weinstein, Stuart, and JTF, SMART Cables. SMART Cables for Observing the Global Ocean: Science and Implementation. United States: N. p., 2019. Web. doi:10.3389/fmars.2019.00424.
Howe, Bruce M., Arbic, Brian K., Aucan, Jerome, Barnes, Chris, Bayliff, Nigel, Becker, Nathan, Butler, Rhett, Doyle, Laurie, Elipot, Shane, Johnson, Gregory C., Landerer, Felix, Lentz, Stephen, Luther, Douglas S., Muller, Malte, Mariano, John, Panayotou, Kate, Rowe, Charlotte Anne, Scholl, Reinhard, Song, Y. Tony, Thomas, Maik, Thomas, Preston N., Thompson, Philip, Tilmann, Frederik, Weber, Tobias, Weinstein, Stuart, & JTF, SMART Cables. SMART Cables for Observing the Global Ocean: Science and Implementation. United States. doi:10.3389/fmars.2019.00424.
Howe, Bruce M., Arbic, Brian K., Aucan, Jerome, Barnes, Chris, Bayliff, Nigel, Becker, Nathan, Butler, Rhett, Doyle, Laurie, Elipot, Shane, Johnson, Gregory C., Landerer, Felix, Lentz, Stephen, Luther, Douglas S., Muller, Malte, Mariano, John, Panayotou, Kate, Rowe, Charlotte Anne, Scholl, Reinhard, Song, Y. Tony, Thomas, Maik, Thomas, Preston N., Thompson, Philip, Tilmann, Frederik, Weber, Tobias, Weinstein, Stuart, and JTF, SMART Cables. Fri . "SMART Cables for Observing the Global Ocean: Science and Implementation". United States. doi:10.3389/fmars.2019.00424. https://www.osti.gov/servlets/purl/1558213.
@article{osti_1558213,
title = {SMART Cables for Observing the Global Ocean: Science and Implementation},
author = {Howe, Bruce M. and Arbic, Brian K. and Aucan, Jerome and Barnes, Chris and Bayliff, Nigel and Becker, Nathan and Butler, Rhett and Doyle, Laurie and Elipot, Shane and Johnson, Gregory C. and Landerer, Felix and Lentz, Stephen and Luther, Douglas S. and Muller, Malte and Mariano, John and Panayotou, Kate and Rowe, Charlotte Anne and Scholl, Reinhard and Song, Y. Tony and Thomas, Maik and Thomas, Preston N. and Thompson, Philip and Tilmann, Frederik and Weber, Tobias and Weinstein, Stuart and JTF, SMART Cables},
abstractNote = {The ocean is key to understanding societal threats including climate change, sea level rise, ocean warming, tsunamis, and earthquakes. Because the ocean is difficult and costly to monitor, we lack fundamental data needed to adequately model, understand, and address these threats. One solution is to integrate sensors into future undersea telecommunications cables. This is the mission of the SMART subsea cables initiative (Science Monitoring And Reliable Telecommunications). SMART sensors would “piggyback” on the power and communications infrastructure of a million kilometers of undersea fiber optic cable and thousands of repeaters, creating the potential for seafloor-based global ocean observing at a modest incremental cost. Initial sensors would measure temperature, pressure, and seismic acceleration. The resulting data would address two critical scientific and societal issues: the long-term need for sustained climate-quality data from the under-sampled ocean (e.g., deep ocean temperature, sea level, and circulation), and the near-term need for improvements to global tsunami warning networks. A Joint Task Force (JTF) led by three UN agencies (ITU/WMO/UNESCO-IOC) is working to bring this initiative to fruition. This paper explores the ocean science and early warning improvements available from SMART cable data, and the societal, technological, and financial elements of realizing such a global network. Simulations show that deep ocean temperature and pressure measurements can improve estimates of ocean circulation and heat content, and cable-based pressure and seismic-acceleration sensors can improve tsunami warning times and earthquake parameters. The technology of integrating these sensors into fiber optic cables is discussed, addressing sea and land-based elements plus delivery of real-time open data products to end users. The science and business case for SMART cables is evaluated. SMART cables have been endorsed by major ocean science organizations, and JTF is working with cable suppliers and sponsors, multilateral development banks and end users to incorporate SMART capabilities into future cable projects. By investing now, we can build up a global ocean network of long-lived SMART cable sensors, creating a transformative addition to the Global Ocean Observing System.},
doi = {10.3389/fmars.2019.00424},
journal = {Frontiers in Marine Science},
issn = {2296-7745},
number = ,
volume = 6,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Current and planned cables span the oceans, enabling the Internet and our society. As they are replaced and expanded over their 10–25 year refresh cycle, environmental sensors (pressure, temperature, acceleration) can be added to the cable repeaters every ~100 km, gradually obtaining real time global coverage (for clarity,more » repeaters are shown only every 300 km. rfs – year ready for service). Cable data: TeleGeography’s Telecom Resources licensed under Creative Commons ShareAlike. Permission obtained for use of figure.« less

Save / Share:

Works referenced in this record:

Effective resolution and drift of Paroscientific pressure sensors derived from long-term seafloor measurements: PAROSCIENTIFIC PRESSURE SENSOR-RESOLUTION AND DRIFT
journal, August 2009

  • Polster, André; Fabian, Marcus; Villinger, Heinrich
  • Geochemistry, Geophysics, Geosystems, Vol. 10, Issue 8
  • DOI: 10.1029/2009GC002532

Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean: MERGING TSUNAMIS DETECTED
journal, March 2012

  • Song, Y. Tony; Fukumori, Ichiro; Shum, C. K.
  • Geophysical Research Letters, Vol. 39, Issue 5
  • DOI: 10.1029/2011GL050767

Overturning in the Subpolar North Atlantic Program: A New International Ocean Observing System
journal, April 2017

  • Susan Lozier, M.; Bacon, Sheldon; Bower, Amy S.
  • Bulletin of the American Meteorological Society, Vol. 98, Issue 4
  • DOI: 10.1175/BAMS-D-16-0057.1

Characteristics and causes of Deep Western Boundary Current transport variability at 34.5° S during 2009–2014
journal, January 2017

  • Meinen, Christopher S.; Garzoli, Silvia L.; Perez, Renellys C.
  • Ocean Science, Vol. 13, Issue 1
  • DOI: 10.5194/os-13-175-2017

Infragravity waves: From driving mechanisms to impacts
journal, February 2018


Multisensor, Microseismic Observations of a Hurricane Transit Near the ALOHA Cabled Observatory
journal, April 2018

  • Butler, Rhett; Aucan, Jérome
  • Journal of Geophysical Research: Solid Earth, Vol. 123, Issue 4
  • DOI: 10.1002/2017JB014885

Evolution of tsunami warning systems and products
journal, October 2015

  • Bernard, Eddie; Titov, Vasily
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue 2053
  • DOI: 10.1098/rsta.2014.0371

Widespread inundation of Pacific islands triggered by distant-source wind-waves
journal, September 2013


Parametric vertical coordinate formulation for multiscale, Boussinesq, and non-Boussinesq ocean modeling
journal, January 2006


Atlantic Meridional Overturning Circulation: Observed Transport and Variability
journal, June 2019

  • Frajka-Williams, Eleanor; Ansorge, Isabelle J.; Baehr, Johanna
  • Frontiers in Marine Science, Vol. 6
  • DOI: 10.3389/fmars.2019.00260

Test of a Method for Monitoring the Geostrophic Meridional Overturning Circulation Using Only Boundary Measurements
journal, April 2013

  • Hughes, Chris W.; Elipot, Shane; Morales Maqueda, Miguel Ángel
  • Journal of Atmospheric and Oceanic Technology, Vol. 30, Issue 4
  • DOI: 10.1175/jtech-d-12-00149.1

An Analysis of Secular Change in Tides at Open-Ocean Sites in the Pacific
journal, July 2014


Source inversion of W phase: speeding up seismic tsunami warning
journal, October 2008


The Earth's hum: the excitation of Earth normal modes by ocean waves
journal, August 2008


Data assimilation with the Ensemble Kalman Filter and the SEIK filter applied to a finite element model of the North Atlantic
journal, March 2007


Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes
journal, January 2008


EMSO: A Distributed Infrastructure for Addressing Geohazards and Global Ocean Change
journal, June 2014


Brillouin Distributed Fiber Sensors: An Overview and Applications
journal, January 2012

  • Galindez-Jamioy, C. A.; López-Higuera, J. M.
  • Journal of Sensors, Vol. 2012
  • DOI: 10.1155/2012/204121

Submarine cable OBS using a retired submarine telecommunication cable: GeO-TOC program
journal, June 1998

  • Kasahara, Junzo; Utada, Hisashi; Sato, Toshinori
  • Physics of the Earth and Planetary Interiors, Vol. 108, Issue 2
  • DOI: 10.1016/s0031-9201(98)00090-9

Mesoscale to Submesoscale Wavenumber Spectra in Drake Passage
journal, February 2016

  • Rocha, Cesar B.; Chereskin, Teresa K.; Gille, Sarah T.
  • Journal of Physical Oceanography, Vol. 46, Issue 2
  • DOI: 10.1175/JPO-D-15-0087.1

SALSA3D: A Tomographic Model of Compressional Wave Slowness in the Earth’s Mantle for Improved Travel‐Time Prediction and Travel‐Time Prediction Uncertainty
journal, October 2016

  • Ballard, Sanford; Hipp, James R.; Begnaud, Michael L.
  • Bulletin of the Seismological Society of America, Vol. 106, Issue 6
  • DOI: 10.1785/0120150271

Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables
journal, June 2018


A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06
journal, July 2017

  • Dobslaw, H.; Bergmann-Wolf, I.; Dill, R.
  • Geophysical Journal International, Vol. 211, Issue 1
  • DOI: 10.1093/gji/ggx302

Fiber-Optic Network Observations of Earthquake Wavefields: FIBER-OPTIC EARTHQUAKE OBSERVATIONS
journal, December 2017

  • Lindsey, Nathaniel J.; Martin, Eileen R.; Dreger, Douglas S.
  • Geophysical Research Letters, Vol. 44, Issue 23
  • DOI: 10.1002/2017GL075722

Cold bottom water events observed in the Hawaii Ocean Time-series: implications for vertical mixing
journal, April 2001

  • Lukas, Roger; Santiago-Mandujano, Fernando; Bingham, Frederick
  • Deep Sea Research Part I: Oceanographic Research Papers, Vol. 48, Issue 4
  • DOI: 10.1016/s0967-0637(00)00078-9

Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model
journal, June 2012


Infragravity waves in the deep ocean: An upward revision: INFRAGRAVITY WAVES IN THE DEEP OCEAN
journal, July 2013

  • Aucan, J.; Ardhuin, F.
  • Geophysical Research Letters, Vol. 40, Issue 13
  • DOI: 10.1002/grl.50321

Mechanism of tsunami earthquakes
journal, January 1972


Generation and propagation of infragravity waves
journal, January 1995

  • Herbers, T. H. C.; Elgar, Steve; Guza, R. T.
  • Journal of Geophysical Research, Vol. 100, Issue C12
  • DOI: 10.1029/95JC02680

Comparison of in situ bottom pressure data with GRACE gravimetry in the Crozet-Kerguelen region
journal, January 2006

  • Rietbroek, R.; LeGrand, P.; Wouters, B.
  • Geophysical Research Letters, Vol. 33, Issue 21
  • DOI: 10.1029/2006GL027452

Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography
journal, January 2016


The gravity recovery and climate experiment: Mission overview and early results: GRACE MISSION OVERVIEW AND EARLY RESULTS
journal, May 2004

  • Tapley, B. D.; Bettadpur, S.; Watkins, M.
  • Geophysical Research Letters, Vol. 31, Issue 9
  • DOI: 10.1029/2004GL019920

Can We Model the Effect of Observed Sea Level Rise on Tides?
journal, July 2018

  • Schindelegger, M.; Green, J. A. M.; Wilmes, S. ‐B.
  • Journal of Geophysical Research: Oceans, Vol. 123, Issue 7
  • DOI: 10.1029/2018JC013959

Measuring ocean mass variability from satellite gravimetry
journal, December 2011


A Theory of the Origin of Microseisms
journal, September 1950

  • Longuet-Higgins, M. S.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 243, Issue 857
  • DOI: 10.1098/rsta.1950.0012

The accuracy of surface elevations in forward global barotropic and baroclinic tide models
journal, December 2004

  • Arbic, Brian K.; Garner, Stephen T.; Hallberg, Robert W.
  • Deep Sea Research Part II: Topical Studies in Oceanography, Vol. 51, Issue 25-26
  • DOI: 10.1016/j.dsr2.2004.09.014

A window on the deep ocean: The special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation
journal, February 2018


The Argo Program: Present and Future
journal, June 2017


Secular trends in ocean tides: Observations and model results
journal, January 2011

  • Müller, M.; Arbic, B. K.; Mitrovica, J. X.
  • Journal of Geophysical Research, Vol. 116, Issue C5
  • DOI: 10.1029/2010JC006387

Concurrent simulation of the eddying general circulation and tides in a global ocean model
journal, January 2010


Using ocean bottom pressure from the gravity recovery and climate experiment (GRACE) to estimate transport variability in the southern I ndian O cean
journal, June 2015

  • Makowski, Jessica K.; Chambers, Don P.; Bonin, Jennifer A.
  • Journal of Geophysical Research: Oceans, Vol. 120, Issue 6
  • DOI: 10.1002/2014JC010575

Rock Burst Intensity Classification Based on the Radiated Energy with Damage Intensity at Jinping II Hydropower Station, China
journal, December 2013

  • Chen, Bing-Rui; Feng, Xia-Ting; Li, Qing-Peng
  • Rock Mechanics and Rock Engineering, Vol. 48, Issue 1
  • DOI: 10.1007/s00603-013-0524-2

Nonlinear wave interactions and high-frequency seafloor pressure
journal, January 1994

  • Herbers, T. H. C.; Guza, R. T.
  • Journal of Geophysical Research, Vol. 99, Issue C5
  • DOI: 10.1029/94JC00054

The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP): A Platform for Integrated Multidisciplinary Ocean Science
journal, August 2019

  • Sloyan, Bernadette M.; Wanninkhof, Rik; Kramp, Martin
  • Frontiers in Marine Science, Vol. 6
  • DOI: 10.3389/fmars.2019.00445

Precise comparisons of bottom-pressure and altimetric ocean tides: Bottom-Pressure and Altimetric Tides
journal, September 2013

  • Ray, R. D.
  • Journal of Geophysical Research: Oceans, Vol. 118, Issue 9
  • DOI: 10.1002/jgrc.20336

New compact ocean bottom cabled seismometer system deployed in the Japan Sea
journal, November 2013

  • Shinohara, Masanao; Kanazawa, Toshihiko; Yamada, Tomoaki
  • Marine Geophysical Research, Vol. 35, Issue 3
  • DOI: 10.1007/s11001-013-9197-1

Deep-Ocean Bottom Pressure Measurement: Drift Removal and Performance
journal, April 1990


Harnessing telecoms cables for science
journal, August 2010


Data Interoperability Between Elements of the Global Ocean Observing System
journal, July 2019

  • Snowden, Derrick; Tsontos, Vardis M.; Handegard, Nils Olav
  • Frontiers in Marine Science, Vol. 6
  • DOI: 10.3389/fmars.2019.00442

Global M 2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling : M
journal, October 2012

  • Müller, M.; Cherniawsky, J. Y.; Foreman, M. G. G.
  • Geophysical Research Letters, Vol. 39, Issue 19
  • DOI: 10.1029/2012GL053320

Ocean FAIR Data Services
journal, August 2019


Global Observing Needs in the Deep Ocean
journal, May 2019


Incessant excitation of the Earth’s free oscillations
journal, January 1998

  • Nawa, Kazunari; Suda, Naoki; Fukao, Yoshio
  • Earth, Planets and Space, Vol. 50, Issue 1
  • DOI: 10.1186/bf03352080

Measuring the Atlantic Meridional Overturning Circulation at 26°N
journal, January 2015


Did a submarine landslide contribute to the 2011 Tohoku tsunami?
journal, November 2014


High‐ Q Spectral Peaks and Nonstationarity in the Deep Ocean Infragravity Wave Band: Tidal Harmonics and Solar Normal Modes
journal, March 2019

  • Chave, Alan D.; Luther, Douglas S.; Thomson, David J.
  • Journal of Geophysical Research: Oceans, Vol. 124, Issue 3
  • DOI: 10.1029/2018JC014586

W phase source inversion for moderate to large earthquakes (1990-2010): W phase inversion for Mw≥ 6.0 earthquakes
journal, March 2012


Excitation of Earth's continuous free oscillations by atmosphere–ocean–seafloor coupling
journal, September 2004


Continuous, Array-Based Estimates of Atlantic Ocean Heat Transport at 26.5°N
journal, May 2011

  • Johns, W. E.; Baringer, M. O.; Beal, L. M.
  • Journal of Climate, Vol. 24, Issue 10
  • DOI: 10.1175/2010JCLI3997.1

Ocean wave sources of seismic noise
journal, January 2011

  • Ardhuin, Fabrice; Stutzmann, Eleonore; Schimmel, Martin
  • Journal of Geophysical Research, Vol. 116, Issue C9
  • DOI: 10.1029/2011JC006952

Enhanced Global Seismic Resolution Using Transoceanic SMART Cables
journal, December 2017

  • Ranasinghe, N.; Rowe, C.; Syracuse, E.
  • Seismological Research Letters, Vol. 89, Issue 1
  • DOI: 10.1785/0220170068

A numerical model for free infragravity waves: Definition and validation at regional and global scales
journal, May 2014


Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum: GLOBAL TIDAL MODELING
journal, March 2004

  • Egbert, Gary D.; Ray, Richard D.; Bills, Bruce G.
  • Journal of Geophysical Research: Oceans, Vol. 109, Issue C3
  • DOI: 10.1029/2003JC001973

Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance
journal, August 2019


Towards Comprehensive Observing and Modeling Systems for Monitoring and Predicting Regional to Coastal Sea Level
journal, July 2019


Ocean Observations Required to Minimize Uncertainty in Global Tsunami Forecasts, Warnings, and Emergency Response
journal, June 2019


What We Have Learned From the Framework for Ocean Observing: Evolution of the Global Ocean Observing System
journal, August 2019


Mid-ocean microseisms: MID-OCEAN MICROSEISMS
journal, April 2005

  • Bromirski, Peter D.; Duennebier, Fred K.; Stephen, Ralph A.
  • Geochemistry, Geophysics, Geosystems, Vol. 6, Issue 4
  • DOI: 10.1029/2004GC000768

Secular changes of the M tide in the Gulf of Maine
journal, March 2006


Earth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space
journal, October 2012


Rupture Process of the 2004 Sumatra-Andaman Earthquake
journal, May 2005


The Observed North Atlantic Meridional Overturning Circulation: Its Meridional Coherence and Ocean Bottom Pressure
journal, February 2014

  • Elipot, Shane; Frajka-Williams, Eleanor; Hughes, Chris W.
  • Journal of Physical Oceanography, Vol. 44, Issue 2
  • DOI: 10.1175/jpo-d-13-026.1

Causes for Contemporary Regional Sea Level Changes
journal, January 2013


Seasonal variation of the M 2 tide
journal, January 2014

  • Müller, Malte; Cherniawsky, Josef Y.; Foreman, Michael G. G.
  • Ocean Dynamics, Vol. 64, Issue 2
  • DOI: 10.1007/s10236-013-0679-0

Climate-change–driven accelerated sea-level rise detected in the altimeter era
journal, February 2018

  • Nerem, R. S.; Beckley, B. D.; Fasullo, J. T.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 9
  • DOI: 10.1073/pnas.1717312115