skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Engineering Fe–Fe3C@Fe–N–C Active Sites and Hybrid Structures from Dual Metal–Organic Frameworks for Oxygen Reduction Reaction in H2–O2 Fuel Cell and Li–O2 Battery

Abstract

Dual metal-organic frameworks (MOFs, i.e., MIL-100(Fe) and ZIF-8) are thermally converted into Fe-Fe3C-embedded Fe-N-codoped carbon as platinum group metal (PGM)-free oxygen reduction reaction (ORR) electrocatalysts. Pyrolysis enables imidazolate in ZIF-8 rearranged into highly N-doped carbon, while Fe from MIL-100(Fe) into N-ligated atomic sites concurrently with a few Fe-Fe3C nanoparticles. Upon precise control of MOF compositions, the optimal catalyst is highly active for the ORR in half-cells (0.88 V in base and 0.79 V versus RHE in acid in half-wave potential), a proton exchange membrane fuel cell (0.76 W cm(-2) in peak power density) and an aprotic Li-O-2 battery (8749 mAh g(-1) in discharge capacity), representing a state-of-the-art PGM-free ORR catalyst. In the material, amorphous carbon with partial graphitization ensures high active site exposure and fast charge transfer simultaneously. Macropores facilitate mass transport to the catalyst surface, followed by oxygen penetration in micropores to reach the infiltrated active sites. Further modeling simulations shed light on the true Fe-Fe3C contribution to the catalyst performance, suggesting Fe3C enhances oxygen affinity, while metallic Fe promotes *OH desorption as the rate-determining step at the nearby Fe-N-C sites. These findings demonstrate MOFs as model system for rational design of electrocatalyst for energy-based functional applications.

Authors:
; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE) - Office of Fuel Cell Technologies (FCTO)
OSTI Identifier:
1558008
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 23
Country of Publication:
United States
Language:
English
Subject:
H-2-O-2 fuel cell; Li-O-2 battery; battery; fuel cell; iron-nitrogen-carbon; metal-organic frameworks; oxygen reduction reaction

Citation Formats

Wang, Hao, Yin, Feng-Xiang, Liu, Ning, Kou, Ronghui, He, Xiao-Bo, Sun, Cheng Jun, Chen, Biao-Hua, Liu, Di-Jia, and Yin, Hua-Qiang. Engineering Fe–Fe3C@Fe–N–C Active Sites and Hybrid Structures from Dual Metal–Organic Frameworks for Oxygen Reduction Reaction in H2–O2 Fuel Cell and Li–O2 Battery. United States: N. p., 2019. Web. doi:10.1002/adfm.201901531.
Wang, Hao, Yin, Feng-Xiang, Liu, Ning, Kou, Ronghui, He, Xiao-Bo, Sun, Cheng Jun, Chen, Biao-Hua, Liu, Di-Jia, & Yin, Hua-Qiang. Engineering Fe–Fe3C@Fe–N–C Active Sites and Hybrid Structures from Dual Metal–Organic Frameworks for Oxygen Reduction Reaction in H2–O2 Fuel Cell and Li–O2 Battery. United States. doi:10.1002/adfm.201901531.
Wang, Hao, Yin, Feng-Xiang, Liu, Ning, Kou, Ronghui, He, Xiao-Bo, Sun, Cheng Jun, Chen, Biao-Hua, Liu, Di-Jia, and Yin, Hua-Qiang. Thu . "Engineering Fe–Fe3C@Fe–N–C Active Sites and Hybrid Structures from Dual Metal–Organic Frameworks for Oxygen Reduction Reaction in H2–O2 Fuel Cell and Li–O2 Battery". United States. doi:10.1002/adfm.201901531.
@article{osti_1558008,
title = {Engineering Fe–Fe3C@Fe–N–C Active Sites and Hybrid Structures from Dual Metal–Organic Frameworks for Oxygen Reduction Reaction in H2–O2 Fuel Cell and Li–O2 Battery},
author = {Wang, Hao and Yin, Feng-Xiang and Liu, Ning and Kou, Ronghui and He, Xiao-Bo and Sun, Cheng Jun and Chen, Biao-Hua and Liu, Di-Jia and Yin, Hua-Qiang},
abstractNote = {Dual metal-organic frameworks (MOFs, i.e., MIL-100(Fe) and ZIF-8) are thermally converted into Fe-Fe3C-embedded Fe-N-codoped carbon as platinum group metal (PGM)-free oxygen reduction reaction (ORR) electrocatalysts. Pyrolysis enables imidazolate in ZIF-8 rearranged into highly N-doped carbon, while Fe from MIL-100(Fe) into N-ligated atomic sites concurrently with a few Fe-Fe3C nanoparticles. Upon precise control of MOF compositions, the optimal catalyst is highly active for the ORR in half-cells (0.88 V in base and 0.79 V versus RHE in acid in half-wave potential), a proton exchange membrane fuel cell (0.76 W cm(-2) in peak power density) and an aprotic Li-O-2 battery (8749 mAh g(-1) in discharge capacity), representing a state-of-the-art PGM-free ORR catalyst. In the material, amorphous carbon with partial graphitization ensures high active site exposure and fast charge transfer simultaneously. Macropores facilitate mass transport to the catalyst surface, followed by oxygen penetration in micropores to reach the infiltrated active sites. Further modeling simulations shed light on the true Fe-Fe3C contribution to the catalyst performance, suggesting Fe3C enhances oxygen affinity, while metallic Fe promotes *OH desorption as the rate-determining step at the nearby Fe-N-C sites. These findings demonstrate MOFs as model system for rational design of electrocatalyst for energy-based functional applications.},
doi = {10.1002/adfm.201901531},
journal = {Advanced Functional Materials},
number = 23,
volume = 29,
place = {United States},
year = {2019},
month = {6}
}

Works referenced in this record:

Toyota MIRAI Fuel Cell Vehicle and Progress Toward a Future Hydrogen Society
journal, January 2015


Range-extending Zinc-air battery for electric vehicle
journal, January 2018


Fuel Cells and Precious-Metal Catalysts
journal, October 1999


Lithium−Air Battery: Promise and Challenges
journal, June 2010

  • Girishkumar, G.; McCloskey, B.; Luntz, A. C.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 14
  • DOI: 10.1021/jz1005384

A New Fuel Cell Cathode Catalyst
journal, March 1964

  • Jasinski, Raymond
  • Nature, Vol. 201, Issue 4925, p. 1212-1213
  • DOI: 10.1038/2011212a0

Organic dyestuffs as catalysts for fuel cells
book, January 1976

  • Jahnke, Horst; Schönborn, Manfred; Zimmermann, Georg
  • Physical and Chemical Applications of Dyestuffs, p. 133-181
  • DOI: 10.1007/BFb0046059

General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities
journal, January 2018


Fe-N-C Oxygen Reduction Fuel Cell Catalyst Derived from Carbendazim: Synthesis, Structure, and Reactivity
journal, March 2014

  • Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen
  • Advanced Energy Materials, Vol. 4, Issue 10
  • DOI: 10.1002/aenm.201301735

Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction: Fe/Fe 3 C Nanoparticles Boost the Activity of Fe–N x
journal, March 2016

  • Jiang, Wen-Jie; Gu, Lin; Li, Li
  • Journal of the American Chemical Society, Vol. 138, Issue 10
  • DOI: 10.1021/jacs.6b00757

Fe-Cluster Pushing Electrons to N-Doped Graphitic Layers with Fe 3 C(Fe) Hybrid Nanostructure to Enhance O 2 Reduction Catalysis of Zn-Air Batteries
journal, January 2017

  • Yang, Jie; Hu, Jiangtao; Weng, Mouyi
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 5
  • DOI: 10.1021/acsami.6b13166

Roles of Fe−N x and Fe−Fe 3 C@C Species in Fe−N/C Electrocatalysts for Oxygen Reduction Reaction
journal, March 2017

  • Kim, Jae Hyung; Sa, Young Jin; Jeong, Hu Young
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 11
  • DOI: 10.1021/acsami.6b13417

Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network
journal, August 2015

  • Shui, Jianglan; Chen, Chen; Grabstanowicz, Lauren
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 34
  • DOI: 10.1073/pnas.1507159112

Cobalt Imidazolate Framework as Precursor for Oxygen Reduction Reaction Electrocatalysts
journal, January 2011

  • Ma, Shengqian; Goenaga, Gabriel A.; Call, Ann V.
  • Chemistry - A European Journal, Vol. 17, Issue 7
  • DOI: 10.1002/chem.201003080

Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells
journal, August 2011

  • Proietti, Eric; Jaouen, Frédéric; Lefèvre, Michel
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1427

An Advanced Nitrogen-Doped Graphene/Cobalt-Embedded Porous Carbon Polyhedron Hybrid for Efficient Catalysis of Oxygen Reduction and Water Splitting
journal, December 2014

  • Hou, Yang; Wen, Zhenhai; Cui, Shumao
  • Advanced Functional Materials, Vol. 25, Issue 6
  • DOI: 10.1002/adfm.201403657

Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks
journal, January 2017

  • Barkholtz, Heather M.; Liu, Di-Jia
  • Materials Horizons, Vol. 4, Issue 1
  • DOI: 10.1039/C6MH00344C

Iron imidazolate framework as precursor for electrocatalysts in polymer electrolyte membrane fuel cells
journal, January 2012

  • Zhao, Dan; Shui, Jiang-Lan; Chen, Chen
  • Chemical Science, Vol. 3, Issue 11
  • DOI: 10.1039/c2sc20657a

Nitrogen-doped Fe/Fe 3 C@graphitic layer/carbon nanotube hybrids derived from MOFs: efficient bifunctional electrocatalysts for ORR and OER
journal, January 2015

  • Li, Ji-Sen; Li, Shun-Li; Tang, Yu-Jia
  • Chemical Communications, Vol. 51, Issue 13
  • DOI: 10.1039/C4CC09062D

Carbonized Nanoscale Metal–Organic Frameworks as High Performance Electrocatalyst for Oxygen Reduction Reaction
journal, November 2014

  • Zhao, Shenlong; Yin, Huajie; Du, Lei
  • ACS Nano, Vol. 8, Issue 12
  • DOI: 10.1021/nn505582e

A dual-metal–organic-framework derived electrocatalyst for oxygen reduction
journal, January 2016

  • Guan, Bu Yuan; Yu, Le; (David) Lou, Xiong Wen
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE02171A

Structural Descriptors of Zeolitic–Imidazolate Frameworks Are Keys to the Activity of Fe–N–C Catalysts
journal, December 2016

  • Armel, Vanessa; Hindocha, Sheena; Salles, Fabrice
  • Journal of the American Chemical Society, Vol. 139, Issue 1
  • DOI: 10.1021/jacs.6b11248

Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries
journal, June 2017


A Versatile Iron-Tannin-Framework Ink Coating Strategy to Fabricate Biomass-Derived Iron Carbide/Fe-N-Carbon Catalysts for Efficient Oxygen Reduction
journal, December 2015

  • Wei, Jing; Liang, Yan; Hu, Yaoxin
  • Angewandte Chemie International Edition, Vol. 55, Issue 4
  • DOI: 10.1002/anie.201509024

In situ XANES of an iron porphyrin irreversibly adsorbed on an electrode surface
journal, November 1991

  • Kim, Sunghyun; Bae, In Tae; Sandifer, Marnita
  • Journal of the American Chemical Society, Vol. 113, Issue 24
  • DOI: 10.1021/ja00024a006

Fe/N/C Composite in Li–O 2 Battery: Studies of Catalytic Structure and Activity toward Oxygen Evolution Reaction
journal, October 2012

  • Shui, Jiang-Lan; Karan, Naba K.; Balasubramanian, Mahalingam
  • Journal of the American Chemical Society, Vol. 134, Issue 40
  • DOI: 10.1021/ja3042993

Experimental Observation of Redox-Induced Fe–N Switching Behavior as a Determinant Role for Oxygen Reduction Activity
journal, October 2015


A General Approach to Preferential Formation of Active Fe–N x Sites in Fe–N/C Electrocatalysts for Efficient Oxygen Reduction Reaction
journal, November 2016

  • Sa, Young Jin; Seo, Dong-Jun; Woo, Jinwoo
  • Journal of the American Chemical Society, Vol. 138, Issue 45
  • DOI: 10.1021/jacs.6b09470

Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination
journal, June 2015

  • Strickland, Kara; Miner, Elise; Jia, Qingying
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8343

Molecule-Level g-C 3 N 4 Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions
journal, February 2017

  • Zheng, Yao; Jiao, Yan; Zhu, Yihan
  • Journal of the American Chemical Society, Vol. 139, Issue 9
  • DOI: 10.1021/jacs.6b13100

High performance platinum single atom electrocatalyst for oxygen reduction reaction
journal, July 2017

  • Liu, Jing; Jiao, Menggai; Lu, Lanlu
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15938