skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: I n   s i t u observation of a phase transition in silicon carbide under shock compression using pulsed x-ray diffraction

Abstract

The behavior of silicon carbide (SiC) under shock compression is of interest due to its applications as a high-strength ceramic and for general understanding of shock-induced polymorphism. Here we use the Matter in Extreme Conditions beamline of the Linac Coherent Light Source to carry out a series of time-resolved pump-probe x-ray diffraction measurements on SiC laser-shocked to as high as 206 GPa. Experiments on single crystals and polycrystals of different polytypes show a transformation from a low-pressure tetrahedral phase to the high-pressure rocksalt-type (B1) structure. We directly observe coexistence of the low- and high-pressure phases in a mixed-phase region and complete transformation to the B1 phase above 200 GPa. The densities measured by x-ray diffraction are in agreement with both continuum gas-gun studies and a theoretical B1 Hugoniot derived from static-compression data. Time-resolved measurements during shock loading and release reveal a large hysteresis upon unloading, with the B1 phase retained to as low as 5 GPa. The sample eventually reverts to a mixture of polytypes of the low-pressure phase at late times. Our study demonstrates that x-ray diffraction is an effective means to characterize the time-dependent structural response of materials undergoing shock-induced phase transformations at megabar pressures.

Authors:
 [1];  [2];  [1];  [2];  [3];  [4];  [5];  [6];  [7];  [2];  [8];  [8];  [8];  [2];  [1]
  1. Princeton Univ., Princeton, NJ (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  5. Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
  6. GFZ German Research Centre for Geosciences, Potsdam (Germany)
  7. European X-ray Free-Electron Laser (XFEL), Hamburg (Germany)
  8. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1546744
Alternate Identifier(s):
OSTI ID: 1546309
Grant/Contract Number:  
SC0016242; AC52-07NA27344; AC02-76SF00515; SC00016242
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 99; Journal Issue: 21; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Tracy, S. J., Smith, R. F., Wicks, J. K., Fratanduono, D. E., Gleason, A. E., Bolme, C. A., Prakapenka, V. B., Speziale, S., Appel, K., Fernandez-Pañella, A., Lee, H. J., MacKinnon, A., Tavella, F., Eggert, J. H., and Duffy, T. S. In situ observation of a phase transition in silicon carbide under shock compression using pulsed x-ray diffraction. United States: N. p., 2019. Web. doi:10.1103/physrevb.99.214106.
Tracy, S. J., Smith, R. F., Wicks, J. K., Fratanduono, D. E., Gleason, A. E., Bolme, C. A., Prakapenka, V. B., Speziale, S., Appel, K., Fernandez-Pañella, A., Lee, H. J., MacKinnon, A., Tavella, F., Eggert, J. H., & Duffy, T. S. In situ observation of a phase transition in silicon carbide under shock compression using pulsed x-ray diffraction. United States. doi:10.1103/physrevb.99.214106.
Tracy, S. J., Smith, R. F., Wicks, J. K., Fratanduono, D. E., Gleason, A. E., Bolme, C. A., Prakapenka, V. B., Speziale, S., Appel, K., Fernandez-Pañella, A., Lee, H. J., MacKinnon, A., Tavella, F., Eggert, J. H., and Duffy, T. S. Mon . "In situ observation of a phase transition in silicon carbide under shock compression using pulsed x-ray diffraction". United States. doi:10.1103/physrevb.99.214106.
@article{osti_1546744,
title = {In situ observation of a phase transition in silicon carbide under shock compression using pulsed x-ray diffraction},
author = {Tracy, S. J. and Smith, R. F. and Wicks, J. K. and Fratanduono, D. E. and Gleason, A. E. and Bolme, C. A. and Prakapenka, V. B. and Speziale, S. and Appel, K. and Fernandez-Pañella, A. and Lee, H. J. and MacKinnon, A. and Tavella, F. and Eggert, J. H. and Duffy, T. S.},
abstractNote = {The behavior of silicon carbide (SiC) under shock compression is of interest due to its applications as a high-strength ceramic and for general understanding of shock-induced polymorphism. Here we use the Matter in Extreme Conditions beamline of the Linac Coherent Light Source to carry out a series of time-resolved pump-probe x-ray diffraction measurements on SiC laser-shocked to as high as 206 GPa. Experiments on single crystals and polycrystals of different polytypes show a transformation from a low-pressure tetrahedral phase to the high-pressure rocksalt-type (B1) structure. We directly observe coexistence of the low- and high-pressure phases in a mixed-phase region and complete transformation to the B1 phase above 200 GPa. The densities measured by x-ray diffraction are in agreement with both continuum gas-gun studies and a theoretical B1 Hugoniot derived from static-compression data. Time-resolved measurements during shock loading and release reveal a large hysteresis upon unloading, with the B1 phase retained to as low as 5 GPa. The sample eventually reverts to a mixture of polytypes of the low-pressure phase at late times. Our study demonstrates that x-ray diffraction is an effective means to characterize the time-dependent structural response of materials undergoing shock-induced phase transformations at megabar pressures.},
doi = {10.1103/physrevb.99.214106},
journal = {Physical Review B},
issn = {2469-9950},
number = 21,
volume = 99,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 17, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Phase transition in SiC from zinc-blende to rock-salt structure and implications for carbon-rich extrasolar planets
journal, November 2017

  • Kidokoro, Yuto; Umemoto, Koichiro; Hirose, Kei
  • American Mineralogist, Vol. 102, Issue 11
  • DOI: 10.2138/am-2017-6033

First-principles study of pressure-induced phase transition in silicon carbide
journal, October 2008


Dynamic yield, compressional, and elastic parameters for several lightweight intermetallic compounds
journal, February 1973

  • Gust, W. H.; Holt, A. C.; Royce, E. B.
  • Journal of Applied Physics, Vol. 44, Issue 2
  • DOI: 10.1063/1.1662224

First principle investigation of phase transition and thermodynamic properties of SiC
journal, August 2015


Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility
journal, November 2004

  • Celliers, P. M.; Bradley, D. K.; Collins, G. W.
  • Review of Scientific Instruments, Vol. 75, Issue 11
  • DOI: 10.1063/1.1807008

Molecular Dynamics Simulation of Structural Transformation in Silicon Carbide under Pressure
journal, April 2000


Pixel array detector for X-ray free electron laser experiments
journal, September 2011

  • Philipp, Hugh T.; Hromalik, Marianne; Tate, Mark
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 649, Issue 1
  • DOI: 10.1016/j.nima.2010.11.189

Raman Investigation of SiC Polytypes
journal, July 1997


Plane shock loading on mono- and nano-crystalline silicon carbide
journal, March 2018

  • Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.
  • Applied Physics Letters, Vol. 112, Issue 11
  • DOI: 10.1063/1.5025583

Equation of State of SiC at Extreme Conditions: New Insight Into the Interior of Carbon-Rich Exoplanets
journal, September 2018

  • Miozzi, F.; Morard, G.; Antonangeli, D.
  • Journal of Geophysical Research: Planets, Vol. 123, Issue 9
  • DOI: 10.1029/2018JE005582

EXPGUI , a graphical user interface for GSAS
journal, April 2001


Diamond and silicon carbide in impact melt rock from the Ries impact crater
journal, November 1995

  • Hough, R. M.; Gilmour, I.; Pillinger, C. T.
  • Nature, Vol. 378, Issue 6552
  • DOI: 10.1038/378041a0

Shock-wave strength properties of boron carbide and silicon carbide.
journal, September 1994


Vibrational, elastic, and structural properties of cubic silicon carbide under pressure up to 75 GPa: Implication for a primary pressure scale
journal, March 2013

  • Zhuravlev, K. K.; Goncharov, Alexander F.; Tkachev, S. N.
  • Journal of Applied Physics, Vol. 113, Issue 11
  • DOI: 10.1063/1.4795348

Femtosecond diffraction studies of solid and liquid phase changes in shock-compressed bismuth
journal, November 2018


Shock compression of 6H polytype SiC to 160 GPa
journal, April 1997


Raman Scattering Characterization of Polytype in Silicon Carbide Ceramics: Comparison with X-ray Diffraction
journal, May 2003


Pressure-induced phase transition in SiC
journal, October 1993


Delayed failure in shocked silicon carbide
journal, May 1997

  • Bourne, Neil; Millett, Jeremy; Pickup, Ian
  • Journal of Applied Physics, Vol. 81, Issue 9
  • DOI: 10.1063/1.364450

Hugoniot and strength behavior of silicon carbide
journal, January 2006

  • Vogler, T. J.; Reinhart, W. D.; Chhabildas, L. C.
  • Journal of Applied Physics, Vol. 99, Issue 2
  • DOI: 10.1063/1.2159084

High-Pressure, High-Temperature Behavior of Silicon Carbide: A Review
journal, May 2018


Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source
journal, October 2017

  • Brown, Shaughnessy Brennan; Hashim, Akel; Gleason, Arianna
  • Review of Scientific Instruments, Vol. 88, Issue 10
  • DOI: 10.1063/1.4997756

High strain-rate plastic flow in Al and Fe
journal, December 2011

  • Smith, R. F.; Eggert, J. H.; Rudd, R. E.
  • Journal of Applied Physics, Vol. 110, Issue 12
  • DOI: 10.1063/1.3670001

Response of silicon carbide to high velocity impact
journal, May 2002

  • Holmquist, Timothy J.; Johnson, Gordon R.
  • Journal of Applied Physics, Vol. 91, Issue 9
  • DOI: 10.1063/1.1468903

Thermal expansion of SiC at high pressure-temperature and implications for thermal convection in the deep interiors of carbide exoplanets: THERMAL EXPANSION OF SIC
journal, January 2017

  • Nisr, C.; Meng, Y.; MacDowell, A. A.
  • Journal of Geophysical Research: Planets, Vol. 122, Issue 1
  • DOI: 10.1002/2016JE005158

Interior Phase Transformations and Mass-Radius Relationships of Silicon-Carbon Planets
journal, September 2014


Material strength and inelastic deformation of silicon carbide under shock wave compression
journal, January 1998

  • Feng, R.; Raiser, G. F.; Gupta, Y. M.
  • Journal of Applied Physics, Vol. 83, Issue 1
  • DOI: 10.1063/1.366704

Decomposition of silicon carbide at high pressures and temperatures
journal, November 2017


Sound velocity, equation of state, temperature and melting of LiF single crystals under shock compression
journal, January 2015

  • Liu, Qiancheng; Zhou, Xianming; Zeng, Xiaolong
  • Journal of Applied Physics, Vol. 117, Issue 4
  • DOI: 10.1063/1.4906558

Structural phase transitions in high-pressure wurtzite to rocksalt phase in GaN and SiC
journal, June 2008

  • Xiao, H. Y.; Gao, F.; Wang, L. M.
  • Applied Physics Letters, Vol. 92, Issue 24
  • DOI: 10.1063/1.2938724

Zinc-blende to rocksalt transition in SiC in a laser-heated diamond-anvil cell
journal, April 2017


The carbon isotope composition of natural SiC (moissanite) from the Earth’s mantle: New discoveries from ophiolites
journal, December 2009


Orientation and rate dependence in high strain-rate compression of single-crystal silicon
journal, December 2012


Pressure-dependent properties of SiC polytypes
journal, May 1996