skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Terawatt-scale photovoltaics: Transform global energy

Abstract

Solar energy has the potential to play a central role in the future global energy system because of the scale of the solar resource, its predictability, and its ubiquitous nature. Global installed solar photovoltaic (PV) capacity exceeded 500 GW at the end of 2018, and an estimated additional 500 GW of PV capacity is projected to be installed by 2022-2023, bringing us into the era of TW-scale PV. Given the speed of change in the PV industry, both in terms of continued dramatic cost decreases and manufacturing-scale increases, the growth toward TW-scale PV has caught many observers, including many of us (1), by surprise. Two years ago, we focused on the challenges of achieving 3 to 10 TW of PV by 2030. Here, we envision a future with ~10 TW of PV by 2030 and 30 to 70 TW by 2050, providing a majority of global energy. PV would be not just a key contributor to electricity generation but also a central contributor to all segments of the global energy system. We discuss ramifications and challenges for complementary technologies (e.g., energy storage, power to gas/liquid fuels/chemicals, grid integration, and multiple sector electrification) and summarize what is needed in research inmore » PV performance, reliability, manufacturing, and recycling.« less

Authors:
 [1];  [2];  [1];  [3];  [1];  [4];  [5];  [6];  [1];  [7];  [7];  [8];  [9];  [10];  [1];  [1];  [11];  [1];  [12];  [13] more »;  [1];  [14];  [15];  [16];  [4];  [7];  [17];  [11];  [18];  [15];  [19];  [15];  [20];  [21];  [22];  [23];  [1];  [24]; ORCiD logo [1];  [25];  [7]; ORCiD logo [1];  [1];  [26];  [7] « less
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  3. LUT Univ., Lappeenranta (Finland)
  4. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  5. King Abdullah Univ. of Science and Technology (KAUST), Thuwal (Saudi Arabia)
  6. NICE Solar Energy, Schwäbisch Hall (Germany)
  7. Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)
  8. California Energy Commission, Sacramento, CA (United States)
  9. Toshiba Mitsubishi-Electric Industrial Systems Corporation, Tokyo (Japan)
  10. RTS Corporation, Tokyo (Japan)
  11. Meyer Burger, Thun (Switzerland)
  12. National Institute of Advanced Industrial Science and Technology (AIST)
  13. VDE Renewables GmbH, Alzenau (Germany)
  14. First Solar, Tempe, AZ (United States)
  15. National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan)
  16. NET Nowak Energy & Technology Ltd., St. Ursen (Switzerland)
  17. Solar Energy Research Institute of Singapore (SERIS) (Singapore)
  18. SunPower Corporation, San Jose, CA (United States)
  19. Helmholtz-Zentrum fur Materialien und Energie and Hochs chule fur Technik und Wirtschaft Berlin (Germany)
  20. ECN, Petten (Netherlands)
  21. Sinton Instruments, Boulder, CO (United States)
  22. SIVA Power, Santa Clara, CA (United States)
  23. Univ. of Ljubljana (Slovenia)
  24. Tokyo University of Science (Japan)
  25. AMROCK Pty LTD, McLaren Vale (Australia)
  26. Toyota Technological Institute, Nagoya (Japan)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE National Renewable Energy Laboratory (NREL), Laboratory Directed Research and Development (LDRD) Program; NREL Strategic Initiative
OSTI Identifier:
1545001
Report Number(s):
NREL/JA-5K00-72778
Journal ID: ISSN 0036-8075
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Science
Additional Journal Information:
Journal Volume: 364; Journal Issue: 6443; Journal ID: ISSN 0036-8075
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 29 ENERGY PLANNING, POLICY, AND ECONOMY; photovoltaics; terawatt; capacity

Citation Formats

Haegel, Nancy M., Atwater Jr., Harry, Barnes, Teresa M., Breyer, Christian, Burrell, Anthony, Chiang, Yet-Ming, De Wolf, Stefaan, Dimmler, Bernhard, Feldman, David J., Glunz, Stefan, Goldschmidt, Jan Christoph, Hochschild, David, Inzunza, Ruben, Kaizuka, Izumi, Kroposki, Benjamin D., Kurtz, Sarah, Leu, Sylvere, Margolis, Robert M., Matsubara, Koji, Metz, Axel, Metzger, Wyatt K., Morjaria, Mahesh, Niki, Shigeru, Nowak, Stefan, Peters, Ian Marius, Philipps, Simon, Reindl, Thomas, Richter, Andre, Rose, Doug, Sakurai, Keiichiro, Schlatmann, Rutger, Shikano, Masahiro, Sinke, Wim, Sinton, Ron, Stanbery, BJ, Topic, Marko, Tumas, William, Ueda, Yuzuru, Van De Lagemaat, Jao, Verlinden, Pierre, Vetter, Matthias, Warren, Emily L., Werner, Mary A., Yamaguchi, Masafumi, and Bett, Andreas W. Terawatt-scale photovoltaics: Transform global energy. United States: N. p., 2019. Web. doi:10.1126/science.aaw1845.
Haegel, Nancy M., Atwater Jr., Harry, Barnes, Teresa M., Breyer, Christian, Burrell, Anthony, Chiang, Yet-Ming, De Wolf, Stefaan, Dimmler, Bernhard, Feldman, David J., Glunz, Stefan, Goldschmidt, Jan Christoph, Hochschild, David, Inzunza, Ruben, Kaizuka, Izumi, Kroposki, Benjamin D., Kurtz, Sarah, Leu, Sylvere, Margolis, Robert M., Matsubara, Koji, Metz, Axel, Metzger, Wyatt K., Morjaria, Mahesh, Niki, Shigeru, Nowak, Stefan, Peters, Ian Marius, Philipps, Simon, Reindl, Thomas, Richter, Andre, Rose, Doug, Sakurai, Keiichiro, Schlatmann, Rutger, Shikano, Masahiro, Sinke, Wim, Sinton, Ron, Stanbery, BJ, Topic, Marko, Tumas, William, Ueda, Yuzuru, Van De Lagemaat, Jao, Verlinden, Pierre, Vetter, Matthias, Warren, Emily L., Werner, Mary A., Yamaguchi, Masafumi, & Bett, Andreas W. Terawatt-scale photovoltaics: Transform global energy. United States. https://doi.org/10.1126/science.aaw1845
Haegel, Nancy M., Atwater Jr., Harry, Barnes, Teresa M., Breyer, Christian, Burrell, Anthony, Chiang, Yet-Ming, De Wolf, Stefaan, Dimmler, Bernhard, Feldman, David J., Glunz, Stefan, Goldschmidt, Jan Christoph, Hochschild, David, Inzunza, Ruben, Kaizuka, Izumi, Kroposki, Benjamin D., Kurtz, Sarah, Leu, Sylvere, Margolis, Robert M., Matsubara, Koji, Metz, Axel, Metzger, Wyatt K., Morjaria, Mahesh, Niki, Shigeru, Nowak, Stefan, Peters, Ian Marius, Philipps, Simon, Reindl, Thomas, Richter, Andre, Rose, Doug, Sakurai, Keiichiro, Schlatmann, Rutger, Shikano, Masahiro, Sinke, Wim, Sinton, Ron, Stanbery, BJ, Topic, Marko, Tumas, William, Ueda, Yuzuru, Van De Lagemaat, Jao, Verlinden, Pierre, Vetter, Matthias, Warren, Emily L., Werner, Mary A., Yamaguchi, Masafumi, and Bett, Andreas W. 2019. "Terawatt-scale photovoltaics: Transform global energy". United States. https://doi.org/10.1126/science.aaw1845. https://www.osti.gov/servlets/purl/1545001.
@article{osti_1545001,
title = {Terawatt-scale photovoltaics: Transform global energy},
author = {Haegel, Nancy M. and Atwater Jr., Harry and Barnes, Teresa M. and Breyer, Christian and Burrell, Anthony and Chiang, Yet-Ming and De Wolf, Stefaan and Dimmler, Bernhard and Feldman, David J. and Glunz, Stefan and Goldschmidt, Jan Christoph and Hochschild, David and Inzunza, Ruben and Kaizuka, Izumi and Kroposki, Benjamin D. and Kurtz, Sarah and Leu, Sylvere and Margolis, Robert M. and Matsubara, Koji and Metz, Axel and Metzger, Wyatt K. and Morjaria, Mahesh and Niki, Shigeru and Nowak, Stefan and Peters, Ian Marius and Philipps, Simon and Reindl, Thomas and Richter, Andre and Rose, Doug and Sakurai, Keiichiro and Schlatmann, Rutger and Shikano, Masahiro and Sinke, Wim and Sinton, Ron and Stanbery, BJ and Topic, Marko and Tumas, William and Ueda, Yuzuru and Van De Lagemaat, Jao and Verlinden, Pierre and Vetter, Matthias and Warren, Emily L. and Werner, Mary A. and Yamaguchi, Masafumi and Bett, Andreas W.},
abstractNote = {Solar energy has the potential to play a central role in the future global energy system because of the scale of the solar resource, its predictability, and its ubiquitous nature. Global installed solar photovoltaic (PV) capacity exceeded 500 GW at the end of 2018, and an estimated additional 500 GW of PV capacity is projected to be installed by 2022-2023, bringing us into the era of TW-scale PV. Given the speed of change in the PV industry, both in terms of continued dramatic cost decreases and manufacturing-scale increases, the growth toward TW-scale PV has caught many observers, including many of us (1), by surprise. Two years ago, we focused on the challenges of achieving 3 to 10 TW of PV by 2030. Here, we envision a future with ~10 TW of PV by 2030 and 30 to 70 TW by 2050, providing a majority of global energy. PV would be not just a key contributor to electricity generation but also a central contributor to all segments of the global energy system. We discuss ramifications and challenges for complementary technologies (e.g., energy storage, power to gas/liquid fuels/chemicals, grid integration, and multiple sector electrification) and summarize what is needed in research in PV performance, reliability, manufacturing, and recycling.},
doi = {10.1126/science.aaw1845},
url = {https://www.osti.gov/biblio/1545001}, journal = {Science},
issn = {0036-8075},
number = 6443,
volume = 364,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Integrating solar into Florida's power system: Potential roles for flexibility
journal, August 2018


Building the Sun4Cast System: Improvements in Solar Power Forecasting
journal, January 2018


What Should We Make with CO2 and How Can We Make It?
journal, May 2018


Terawatt-scale photovoltaics: Trajectories and challenges
journal, April 2017


Hydrogen at Scale (H 2 @Scale): Key to a Clean, Economic, and Sustainable Energy System
journal, January 2018


Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany
journal, April 2018


Works referencing / citing this record:

Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility‐scale PV levelised cost of electricity
journal, August 2019


The role of photovoltaics in a sustainable European energy system under variable CO 2 emissions targets, transmission capacities, and costs assumptions
journal, November 2019


Case study of MW‐sized power generation at St. Eustatius island combining photovoltaics, battery storage, and gensets
journal, November 2019

  • Garralaga Rojas, Enrique; Sadri, Hamed; Krueger, Wiebke
  • Progress in Photovoltaics: Research and Applications, Vol. 28, Issue 6
  • https://doi.org/10.1002/pip.3222

Radiative Efficiency and Charge‐Carrier Lifetimes and Diffusion Length in Polycrystalline CdSeTe Heterostructures
journal, December 2019


Formation of carbon–nitrogen bonds in carbon monoxide electrolysis
journal, August 2019


Comparisons of WO 3 reduction to H x WO 3 under thermochemical and electrochemical control
journal, January 2019


Shockley–Queisser triangle predicts the thermodynamic efficiency limits of arbitrarily complex multijunction bifacial solar cells
journal, November 2019


Nexus approach to solar technology for energy and water supply for sustainable rural development in Egypt: a review
journal, September 2019


Detailed illumination model for bifacial solar cells
journal, January 2020


Global Climate Data Processing and Mapping of Degradation Mechanisms and Degradation Rates of PV Modules
journal, December 2019


Radiative Efficiency and Charge‐Carrier Lifetimes and Diffusion Length in Polycrystalline CdSeTe Heterostructures
journal, January 2020