skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Terawatt-scale photovoltaics: Transform global energy

Abstract

Solar energy has the potential to play a central role in the future global energy system because of the scale of the solar resource, its predictability, and its ubiquitous nature. Global installed solar photovoltaic (PV) capacity exceeded 500 GW at the end of 2018, and an estimated additional 500 GW of PV capacity is projected to be installed by 2022-2023, bringing us into the era of TW-scale PV. Given the speed of change in the PV industry, both in terms of continued dramatic cost decreases and manufacturing-scale increases, the growth toward TW-scale PV has caught many observers, including many of us (1), by surprise. Two years ago, we focused on the challenges of achieving 3 to 10 TW of PV by 2030. Here, we envision a future with ~10 TW of PV by 2030 and 30 to 70 TW by 2050, providing a majority of global energy. PV would be not just a key contributor to electricity generation but also a central contributor to all segments of the global energy system. We discuss ramifications and challenges for complementary technologies (e.g., energy storage, power to gas/liquid fuels/chemicals, grid integration, and multiple sector electrification) and summarize what is needed in research inmore » PV performance, reliability, manufacturing, and recycling.« less

Authors:
 [1];  [2];  [1];  [3];  [1];  [4];  [5];  [6];  [1];  [7];  [7];  [8];  [9];  [10];  [1];  [1];  [11];  [1];  [12];  [13] more »;  [1];  [14];  [15];  [16];  [4];  [7];  [17];  [11];  [18];  [15];  [19];  [15];  [20];  [21];  [22];  [23];  [1];  [24]; ORCiD logo [1];  [25];  [7]; ORCiD logo [1];  [1];  [26];  [7] « less
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  3. LUT Univ., Lappeenranta (Finland)
  4. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  5. King Abdullah Univ. of Science and Technology (KAUST), Thuwal (Saudi Arabia)
  6. NICE Solar Energy, Schwäbisch Hall (Germany)
  7. Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany)
  8. California Energy Commission, Sacramento, CA (United States)
  9. Toshiba Mitsubishi-Electric Industrial Systems Corporation, Tokyo (Japan)
  10. RTS Corporation, Tokyo (Japan)
  11. Meyer Burger, Thun (Switzerland)
  12. National Institute of Advanced Industrial Science and Technology (AIST)
  13. VDE Renewables GmbH, Alzenau (Germany)
  14. First Solar, Tempe, AZ (United States)
  15. National Inst. of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan)
  16. NET Nowak Energy & Technology Ltd., St. Ursen (Switzerland)
  17. Solar Energy Research Institute of Singapore (SERIS) (Singapore)
  18. SunPower Corporation, San Jose, CA (United States)
  19. Helmholtz-Zentrum fur Materialien und Energie and Hochs chule fur Technik und Wirtschaft Berlin (Germany)
  20. ECN, Petten (Netherlands)
  21. Sinton Instruments, Boulder, CO (United States)
  22. SIVA Power, Santa Clara, CA (United States)
  23. Univ. of Ljubljana (Slovenia)
  24. Tokyo University of Science (Japan)
  25. AMROCK Pty LTD, McLaren Vale (Australia)
  26. Toyota Technological Institute, Nagoya (Japan)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE National Renewable Energy Laboratory (NREL), Laboratory Directed Research and Development (LDRD) Program; NREL Strategic Initiative
OSTI Identifier:
1545001
Report Number(s):
NREL/JA-5K00-72778
Journal ID: ISSN 0036-8075
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Science
Additional Journal Information:
Journal Volume: 364; Journal Issue: 6443; Journal ID: ISSN 0036-8075
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 29 ENERGY PLANNING, POLICY, AND ECONOMY; photovoltaics; terawatt; capacity

Citation Formats

Haegel, Nancy M., Atwater Jr., Harry, Barnes, Teresa M., Breyer, Christian, Burrell, Anthony, Chiang, Yet-Ming, De Wolf, Stefaan, Dimmler, Bernhard, Feldman, David J., Glunz, Stefan, Goldschmidt, Jan Christoph, Hochschild, David, Inzunza, Ruben, Kaizuka, Izumi, Kroposki, Benjamin D., Kurtz, Sarah, Leu, Sylvere, Margolis, Robert M., Matsubara, Koji, Metz, Axel, Metzger, Wyatt K., Morjaria, Mahesh, Niki, Shigeru, Nowak, Stefan, Peters, Ian Marius, Philipps, Simon, Reindl, Thomas, Richter, Andre, Rose, Doug, Sakurai, Keiichiro, Schlatmann, Rutger, Shikano, Masahiro, Sinke, Wim, Sinton, Ron, Stanbery, BJ, Topic, Marko, Tumas, William, Ueda, Yuzuru, Van De Lagemaat, Jao, Verlinden, Pierre, Vetter, Matthias, Warren, Emily L., Werner, Mary A., Yamaguchi, Masafumi, and Bett, Andreas W. Terawatt-scale photovoltaics: Transform global energy. United States: N. p., 2019. Web. doi:10.1126/science.aaw1845.
Haegel, Nancy M., Atwater Jr., Harry, Barnes, Teresa M., Breyer, Christian, Burrell, Anthony, Chiang, Yet-Ming, De Wolf, Stefaan, Dimmler, Bernhard, Feldman, David J., Glunz, Stefan, Goldschmidt, Jan Christoph, Hochschild, David, Inzunza, Ruben, Kaizuka, Izumi, Kroposki, Benjamin D., Kurtz, Sarah, Leu, Sylvere, Margolis, Robert M., Matsubara, Koji, Metz, Axel, Metzger, Wyatt K., Morjaria, Mahesh, Niki, Shigeru, Nowak, Stefan, Peters, Ian Marius, Philipps, Simon, Reindl, Thomas, Richter, Andre, Rose, Doug, Sakurai, Keiichiro, Schlatmann, Rutger, Shikano, Masahiro, Sinke, Wim, Sinton, Ron, Stanbery, BJ, Topic, Marko, Tumas, William, Ueda, Yuzuru, Van De Lagemaat, Jao, Verlinden, Pierre, Vetter, Matthias, Warren, Emily L., Werner, Mary A., Yamaguchi, Masafumi, & Bett, Andreas W. Terawatt-scale photovoltaics: Transform global energy. United States. doi:10.1126/science.aaw1845.
Haegel, Nancy M., Atwater Jr., Harry, Barnes, Teresa M., Breyer, Christian, Burrell, Anthony, Chiang, Yet-Ming, De Wolf, Stefaan, Dimmler, Bernhard, Feldman, David J., Glunz, Stefan, Goldschmidt, Jan Christoph, Hochschild, David, Inzunza, Ruben, Kaizuka, Izumi, Kroposki, Benjamin D., Kurtz, Sarah, Leu, Sylvere, Margolis, Robert M., Matsubara, Koji, Metz, Axel, Metzger, Wyatt K., Morjaria, Mahesh, Niki, Shigeru, Nowak, Stefan, Peters, Ian Marius, Philipps, Simon, Reindl, Thomas, Richter, Andre, Rose, Doug, Sakurai, Keiichiro, Schlatmann, Rutger, Shikano, Masahiro, Sinke, Wim, Sinton, Ron, Stanbery, BJ, Topic, Marko, Tumas, William, Ueda, Yuzuru, Van De Lagemaat, Jao, Verlinden, Pierre, Vetter, Matthias, Warren, Emily L., Werner, Mary A., Yamaguchi, Masafumi, and Bett, Andreas W. Fri . "Terawatt-scale photovoltaics: Transform global energy". United States. doi:10.1126/science.aaw1845. https://www.osti.gov/servlets/purl/1545001.
@article{osti_1545001,
title = {Terawatt-scale photovoltaics: Transform global energy},
author = {Haegel, Nancy M. and Atwater Jr., Harry and Barnes, Teresa M. and Breyer, Christian and Burrell, Anthony and Chiang, Yet-Ming and De Wolf, Stefaan and Dimmler, Bernhard and Feldman, David J. and Glunz, Stefan and Goldschmidt, Jan Christoph and Hochschild, David and Inzunza, Ruben and Kaizuka, Izumi and Kroposki, Benjamin D. and Kurtz, Sarah and Leu, Sylvere and Margolis, Robert M. and Matsubara, Koji and Metz, Axel and Metzger, Wyatt K. and Morjaria, Mahesh and Niki, Shigeru and Nowak, Stefan and Peters, Ian Marius and Philipps, Simon and Reindl, Thomas and Richter, Andre and Rose, Doug and Sakurai, Keiichiro and Schlatmann, Rutger and Shikano, Masahiro and Sinke, Wim and Sinton, Ron and Stanbery, BJ and Topic, Marko and Tumas, William and Ueda, Yuzuru and Van De Lagemaat, Jao and Verlinden, Pierre and Vetter, Matthias and Warren, Emily L. and Werner, Mary A. and Yamaguchi, Masafumi and Bett, Andreas W.},
abstractNote = {Solar energy has the potential to play a central role in the future global energy system because of the scale of the solar resource, its predictability, and its ubiquitous nature. Global installed solar photovoltaic (PV) capacity exceeded 500 GW at the end of 2018, and an estimated additional 500 GW of PV capacity is projected to be installed by 2022-2023, bringing us into the era of TW-scale PV. Given the speed of change in the PV industry, both in terms of continued dramatic cost decreases and manufacturing-scale increases, the growth toward TW-scale PV has caught many observers, including many of us (1), by surprise. Two years ago, we focused on the challenges of achieving 3 to 10 TW of PV by 2030. Here, we envision a future with ~10 TW of PV by 2030 and 30 to 70 TW by 2050, providing a majority of global energy. PV would be not just a key contributor to electricity generation but also a central contributor to all segments of the global energy system. We discuss ramifications and challenges for complementary technologies (e.g., energy storage, power to gas/liquid fuels/chemicals, grid integration, and multiple sector electrification) and summarize what is needed in research in PV performance, reliability, manufacturing, and recycling.},
doi = {10.1126/science.aaw1845},
journal = {Science},
issn = {0036-8075},
number = 6443,
volume = 364,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Integrating solar into Florida's power system: Potential roles for flexibility
journal, August 2018


Building the Sun4Cast System: Improvements in Solar Power Forecasting
journal, January 2018

  • Haupt, Sue Ellen; Kosović, Branko; Jensen, Tara
  • Bulletin of the American Meteorological Society, Vol. 99, Issue 1
  • DOI: 10.1175/BAMS-D-16-0221.1

What Should We Make with CO2 and How Can We Make It?
journal, May 2018


Terawatt-scale photovoltaics: Trajectories and challenges
journal, April 2017


Hydrogen at Scale (H 2 @Scale): Key to a Clean, Economic, and Sustainable Energy System
journal, January 2018

  • Pivovar, Bryan; Rustagi, Neha; Satyapal, Sunita
  • The Electrochemical Society Interface, Vol. 27, Issue 1
  • DOI: 10.1149/2.F04181if

Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany
journal, April 2018


From Laboratory to Production: Learning Models of Efficiency and Manufacturing Cost of Industrial Crystalline Silicon and Thin-Film Photovoltaic Technologies
journal, November 2018


The Fall and Rise of Gravity Storage Technologies
journal, March 2019