skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Grain-Boundary Resistance in Copper Interconnects: From an Atomistic Model to a Neural Network

Abstract

Not provided.

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Purdue Univ., West Lafayette, IN (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1540705
DOE Contract Number:  
FC52-08NA28617
Resource Type:
Journal Article
Journal Name:
Physical Review Applied
Additional Journal Information:
Journal Volume: 9; Journal Issue: 4; Journal ID: ISSN 2331-7019
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
Physics

Citation Formats

Valencia, Daniel, Wilson, Evan, Jiang, Zhengping, Valencia-Zapata, Gustavo A., Wang, Kuang-Chung, Klimeck, Gerhard, and Povolotskyi, Michael. Grain-Boundary Resistance in Copper Interconnects: From an Atomistic Model to a Neural Network. United States: N. p., 2018. Web. doi:10.1103/physrevapplied.9.044005.
Valencia, Daniel, Wilson, Evan, Jiang, Zhengping, Valencia-Zapata, Gustavo A., Wang, Kuang-Chung, Klimeck, Gerhard, & Povolotskyi, Michael. Grain-Boundary Resistance in Copper Interconnects: From an Atomistic Model to a Neural Network. United States. doi:10.1103/physrevapplied.9.044005.
Valencia, Daniel, Wilson, Evan, Jiang, Zhengping, Valencia-Zapata, Gustavo A., Wang, Kuang-Chung, Klimeck, Gerhard, and Povolotskyi, Michael. Sun . "Grain-Boundary Resistance in Copper Interconnects: From an Atomistic Model to a Neural Network". United States. doi:10.1103/physrevapplied.9.044005.
@article{osti_1540705,
title = {Grain-Boundary Resistance in Copper Interconnects: From an Atomistic Model to a Neural Network},
author = {Valencia, Daniel and Wilson, Evan and Jiang, Zhengping and Valencia-Zapata, Gustavo A. and Wang, Kuang-Chung and Klimeck, Gerhard and Povolotskyi, Michael},
abstractNote = {Not provided.},
doi = {10.1103/physrevapplied.9.044005},
journal = {Physical Review Applied},
issn = {2331-7019},
number = 4,
volume = 9,
place = {United States},
year = {2018},
month = {4}
}