skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: H(div) conforming and DG methods for incompressible Euler’s equations

Abstract

Not provided.

Authors:
; ;
Publication Date:
Research Org.:
Brown Univ., Providence, RI (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1540602
DOE Contract Number:  
FG02-08ER25863
Resource Type:
Journal Article
Journal Name:
IMA Journal of Numerical Analysis
Additional Journal Information:
Journal Volume: 37; Journal Issue: 4; Journal ID: ISSN 0272-4979
Publisher:
Oxford University Press/Institute of Mathematics and its Applications
Country of Publication:
United States
Language:
English
Subject:
Mathematics

Citation Formats

Guzmán, Johnny, Shu, Chi-Wang, and Sequeira, Filánder A. H(div) conforming and DG methods for incompressible Euler’s equations. United States: N. p., 2016. Web. doi:10.1093/imanum/drw054.
Guzmán, Johnny, Shu, Chi-Wang, & Sequeira, Filánder A. H(div) conforming and DG methods for incompressible Euler’s equations. United States. doi:10.1093/imanum/drw054.
Guzmán, Johnny, Shu, Chi-Wang, and Sequeira, Filánder A. Fri . "H(div) conforming and DG methods for incompressible Euler’s equations". United States. doi:10.1093/imanum/drw054.
@article{osti_1540602,
title = {H(div) conforming and DG methods for incompressible Euler’s equations},
author = {Guzmán, Johnny and Shu, Chi-Wang and Sequeira, Filánder A.},
abstractNote = {Not provided.},
doi = {10.1093/imanum/drw054},
journal = {IMA Journal of Numerical Analysis},
issn = {0272-4979},
number = 4,
volume = 37,
place = {United States},
year = {2016},
month = {11}
}

Works referenced in this record:

A second-order projection method for the incompressible navier-stokes equations
journal, December 1989


A locally conservative LDG method for the incompressible Navier-Stokes equations
journal, October 2004


A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations
journal, September 2006

  • Cockburn, Bernardo; Kanschat, Guido; Schötzau, Dominik
  • Journal of Scientific Computing, Vol. 31, Issue 1-2
  • DOI: 10.1007/s10915-006-9107-7

Optimal Convergence of the Original DG Method on Special Meshes for Variable Transport Velocity
journal, January 2010

  • Cockburn, Bernardo; Dong, Bo; Guzmán, Johnny
  • SIAM Journal on Numerical Analysis, Vol. 48, Issue 1
  • DOI: 10.1137/080740805

Superconvergent discontinuous Galerkin methods for second-order elliptic problems
journal, January 2009


A High-Order Discontinuous Galerkin Method for 2D Incompressible Flows
journal, May 2000

  • Liu, Jian-Guo; Shu, Chi-Wang
  • Journal of Computational Physics, Vol. 160, Issue 2
  • DOI: 10.1006/jcph.2000.6475