skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of a ReaxFF reactive force field for lithium ion conducting solid electrolyte Li 1+x Al x Ti 2−x (PO 4 ) 3 (LATP)

Abstract

Using a ReaxFF reactive force field, we investigated the composition-dependent ionic conductivity and the Li migration behaviors in Li 1+xAl xTi 2−x(PO 4) 3solid electrolyte.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [2];  [3];  [3]; ORCiD logo [1]
  1. Department of Mechanical and Nuclear Engineering; Pennsylvania State University; University Park; Pennsylvania 16802; USA
  2. Department of Chemical Engineering; Pennsylvania State University; University Park; Pennsylvania 16802; USA
  3. Department of Materials Science and Engineering; Materials Research Institute; Pennsylvania State University; University Park; Pennsylvania 16802
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1540018
DOE Contract Number:  
AR0000766
Resource Type:
Journal Article
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Volume: 20; Journal Issue: 34; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
Chemistry; Physics

Citation Formats

Shin, Yun Kyung, Sengul, Mert Y., Jonayat, A. S. M., Lee, Wonho, Gomez, Enrique D., Randall, Clive A., and Duin, Adri C. T. van. Development of a ReaxFF reactive force field for lithium ion conducting solid electrolyte Li 1+x Al x Ti 2−x (PO 4 ) 3 (LATP). United States: N. p., 2018. Web. doi:10.1039/c8cp03586e.
Shin, Yun Kyung, Sengul, Mert Y., Jonayat, A. S. M., Lee, Wonho, Gomez, Enrique D., Randall, Clive A., & Duin, Adri C. T. van. Development of a ReaxFF reactive force field for lithium ion conducting solid electrolyte Li 1+x Al x Ti 2−x (PO 4 ) 3 (LATP). United States. doi:10.1039/c8cp03586e.
Shin, Yun Kyung, Sengul, Mert Y., Jonayat, A. S. M., Lee, Wonho, Gomez, Enrique D., Randall, Clive A., and Duin, Adri C. T. van. Mon . "Development of a ReaxFF reactive force field for lithium ion conducting solid electrolyte Li 1+x Al x Ti 2−x (PO 4 ) 3 (LATP)". United States. doi:10.1039/c8cp03586e.
@article{osti_1540018,
title = {Development of a ReaxFF reactive force field for lithium ion conducting solid electrolyte Li 1+x Al x Ti 2−x (PO 4 ) 3 (LATP)},
author = {Shin, Yun Kyung and Sengul, Mert Y. and Jonayat, A. S. M. and Lee, Wonho and Gomez, Enrique D. and Randall, Clive A. and Duin, Adri C. T. van},
abstractNote = {Using a ReaxFF reactive force field, we investigated the composition-dependent ionic conductivity and the Li migration behaviors in Li1+xAlxTi2−x(PO4)3solid electrolyte.},
doi = {10.1039/c8cp03586e},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
issn = {1463-9076},
number = 34,
volume = 20,
place = {United States},
year = {2018},
month = {1}
}

Works referenced in this record:

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Rechargeable Lithium Batteries with Aqueous Electrolytes
journal, May 1994


7Li MRI of Li batteries reveals location of microstructural lithium
journal, February 2012

  • Chandrashekar, S.; Trease, Nicole M.; Chang, Hee Jung
  • Nature Materials, Vol. 11, Issue 4
  • DOI: 10.1038/nmat3246

Lithium ion conductivity of the Li2S–P2S5 glass-based electrolytes prepared by the melt quenching method
journal, May 2007


A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Crystal Structure of Fast Lithium-ion-conducting Cubic Li 7 La 3 Zr 2 O 12
journal, January 2011

  • Awaka, Junji; Takashima, Akira; Kataoka, Kunimitsu
  • Chemistry Letters, Vol. 40, Issue 1
  • DOI: 10.1246/cl.2011.60

Lithium Lanthanum Titanates:  A Review
journal, October 2003

  • Stramare, S.; Thangadurai, V.; Weppner, W.
  • Chemistry of Materials, Vol. 15, Issue 21
  • DOI: 10.1021/cm0300516

Fast Na+-ion transport in skeleton structures
journal, February 1976


Inorganic solid Li ion conductors: An overview
journal, June 2009


Fast Li⊕ Conducting Ceramic Electrolytes
journal, February 1996


Nouvelles solutions solides LI(MIV)2−x(NIV)x(PO4)3 (L = Li,Na M,N = Ge,Sn,Ti,Zr,Hf) synthèse et étude par diffraction x et conductivité ionique
journal, August 1991


Relationship between Activation Energy and Bottleneck Size for Li + Ion Conduction in NASICON Materials of Composition LiMM‘(PO 4 ) 3 ; M, M‘ = Ge, Ti, Sn, Hf
journal, January 1998

  • Martínez-Juárez, Ana; Pecharromán, Carlos; Iglesias, Juan E.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 2
  • DOI: 10.1021/jp973296c

Reversible Triclinic-Rhombohedral Phase Transition in LiHf 2 (PO 4 ) 3 :  Crystal Structures from Neutron Powder Diffraction
journal, July 1997

  • Losilla, Enrique R.; Aranda, Miguel A. G.; Martínez-Lara, María
  • Chemistry of Materials, Vol. 9, Issue 7
  • DOI: 10.1021/cm970078n

Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate
journal, January 1990

  • Aono, Hiromichi
  • Journal of The Electrochemical Society, Vol. 137, Issue 4
  • DOI: 10.1149/1.2086597

Structural, spectroscopic and electrochemical study of V5+ substituted LiTi2(PO4)3 solid electrolyte for lithium-ion batteries
journal, June 2014

  • Rao, A. Venkateswara; Veeraiah, V.; Rao, A. V. Prasada
  • Bulletin of Materials Science, Vol. 37, Issue 4
  • DOI: 10.1007/s12034-014-0021-6

Li+-ion conductivity of Li1+xMxTi2−x(PO4)3 (M: Sc3+, Y3+)
journal, July 1992


High lithium ion conducting solid electrolytes based on NASICON Li 1+x Al x M 2−x (PO 4 ) 3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5)
journal, May 2015


A microcontact impedance study on NASICON-type Li 1+x Al x Ti 2−x (PO 4 ) 3 (0 ≤ x ≤ 0.5) single crystals
journal, January 2016

  • Rettenwander, D.; Welzl, A.; Pristat, S.
  • Journal of Materials Chemistry A, Vol. 4, Issue 4
  • DOI: 10.1039/C5TA08545D

Very fast bulk Li ion diffusivity in crystalline Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 as seen using NMR relaxometry
journal, January 2015

  • Epp, Viktor; Ma, Qianli; Hammer, Eva-Maria
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 48
  • DOI: 10.1039/C5CP05337D

ReaxFF SiO Reactive Force Field for Silicon and Silicon Oxide Systems
journal, May 2003

  • van Duin, Adri C. T.; Strachan, Alejandro; Stewman, Shannon
  • The Journal of Physical Chemistry A, Vol. 107, Issue 19
  • DOI: 10.1021/jp0276303

Development and Application of a ReaxFF Reactive Force Field for Oxidative Dehydrogenation on Vanadium Oxide Catalysts
journal, July 2008

  • Chenoweth, Kimberly; van Duin, Adri C. T.; Persson, Petter
  • The Journal of Physical Chemistry C, Vol. 112, Issue 37
  • DOI: 10.1021/jp802134x

Molecular dynamics simulation of lithium ion diffusion in LiCoO2 cathode material
journal, November 2015


Shell Model for Atomistic Simulation of Lithium Diffusion in Mixed Mn/Ti Oxides
journal, October 2014

  • Kerisit, Sebastien; Chaka, Anne M.; Droubay, Timothy C.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 42
  • DOI: 10.1021/jp506025k

Lithium diffusion in Li1−xFePO4: the effect of cationic disorder
journal, January 2012

  • Tealdi, Cristina; Spreafico, Clelia; Mustarelli, Piercarlo
  • Journal of Materials Chemistry, Vol. 22, Issue 47
  • DOI: 10.1039/c2jm35585j

Classical atomistic simulations of surfaces and heterogeneous interfaces with the charge-optimized many body (COMB) potentials
journal, September 2013

  • Liang, Tao; Shan, Tzu-Ray; Cheng, Yu-Ting
  • Materials Science and Engineering: R: Reports, Vol. 74, Issue 9
  • DOI: 10.1016/j.mser.2013.07.001

A large-scale simulation method on complex ternary Li–Mn–O compounds for Li-ion battery cathode materials
journal, February 2016


Cold sintering process of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 solid electrolyte
journal, March 2017

  • Berbano, Seth S.; Guo, Jing; Guo, Hanzheng
  • Journal of the American Ceramic Society, Vol. 100, Issue 5
  • DOI: 10.1111/jace.14727

Cold sintering: Current status and prospects
journal, July 2017

  • Maria, Jon-Paul; Kang, Xiaoyu; Floyd, Richard D.
  • Journal of Materials Research, Vol. 32, Issue 17
  • DOI: 10.1557/jmr.2017.262

Cold Sintering: A Paradigm Shift for Processing and Integration of Ceramics
journal, August 2016

  • Guo, Jing; Guo, Hanzheng; Baker, Amanda L.
  • Angewandte Chemie International Edition, Vol. 55, Issue 38
  • DOI: 10.1002/anie.201605443

ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation
journal, February 2008

  • Chenoweth, Kimberly; van Duin, Adri C. T.; Goddard, William A.
  • The Journal of Physical Chemistry A, Vol. 112, Issue 5
  • DOI: 10.1021/jp709896w

Variable charge many-body interatomic potentials
journal, May 2012

  • Shin, Yun Kyung; Shan, Tzu-Ray; Liang, Tao
  • MRS Bulletin, Vol. 37, Issue 5
  • DOI: 10.1557/mrs.2012.95

The ReaxFF reactive force-field: development, applications and future directions
journal, March 2016


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Projector augmented-wave method
journal, December 1994


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

On the Energetic Stability and Electrochemistry of Li 2 MnSiO 4 Polymorphs
journal, September 2008

  • Arroyo-deDompablo, M. E.; Dominko, R.; Gallardo-Amores, J. M.
  • Chemistry of Materials, Vol. 20, Issue 17
  • DOI: 10.1021/cm801036k

The Compressibility of Media under Extreme Pressures
journal, September 1944

  • Murnaghan, F. D.
  • Proceedings of the National Academy of Sciences, Vol. 30, Issue 9
  • DOI: 10.1073/pnas.30.9.244

Elasticity and constitution of the Earth's interior
journal, June 1952


First-principles prediction of ferroelastic phase transition in AlPO4
journal, February 2013


Six-fold-coordinated phosphorus by oxygen in AlPO4 quartz homeotype under high pressure
journal, July 2007

  • Pellicer-Porres, Julio; Saitta, Antonino Marco; Polian, Alain
  • Nature Materials, Vol. 6, Issue 9
  • DOI: 10.1038/nmat1966

Phase diagram and thermodynamic properties of AIPO4 based on first-principles calculations and the quasiharmonic approximation
journal, July 2014


On the structure of Li 3 Ti 2 (PO 4 ) 3
journal, January 2002

  • Aatiq, Abderrahim; Ménétrier, Michel; Croguennec, Laurence
  • J. Mater. Chem., Vol. 12, Issue 10
  • DOI: 10.1039/B203652P

Ab initio study of the thermodynamic properties of nonmagnetic elementary fcc metals: Exchange-correlation-related error bars and chemical trends
journal, July 2007


Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences
journal, July 2013

  • Bochevarov, Art D.; Harder, Edward; Hughes, Thomas F.
  • International Journal of Quantum Chemistry, Vol. 113, Issue 18
  • DOI: 10.1002/qua.24481

Molecular Dynamics Simulations of the Oxidation of Aluminum Nanoparticles using the ReaxFF Reactive Force Field
journal, July 2015

  • Hong, Sungwook; van Duin, Adri C. T.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 31
  • DOI: 10.1021/acs.jpcc.5b04650

Molecular dynamics simulations of the interactions between TiO 2 nanoparticles and water with Na + and Cl , methanol, and formic acid using a reactive force field
journal, November 2012

  • Kim, Sung-Yup; van Duin, Adri C. T.; Kubicki, James D.
  • Journal of Materials Research, Vol. 28, Issue 3
  • DOI: 10.1557/jmr.2012.367

A reactive force field for lithium–aluminum silicates with applications to eucryptite phases
journal, November 2011

  • Narayanan, Badri; van Duin, Adri C. T.; Kappes, Branden B.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 20, Issue 1
  • DOI: 10.1088/0965-0393/20/1/015002

Atomic-scale insight into the interactions between hydroxyl radicals and DNA in solution using the ReaxFF reactive force field
journal, October 2015


LiAlO-coated LiCoO as cathode material for lithium ion batteries
journal, March 2005


Nano-composite solid polymer electrolytes for solid state ionic devices
journal, May 2004


Cold Sintering Process of Composites: Bridging the Processing Temperature Gap of Ceramic and Polymer Materials
journal, August 2016

  • Guo, Jing; Berbano, Seth S.; Guo, Hanzheng
  • Advanced Functional Materials, Vol. 26, Issue 39
  • DOI: 10.1002/adfm.201602489

Escaping free-energy minima
journal, September 2002

  • Laio, A.; Parrinello, M.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 20
  • DOI: 10.1073/pnas.202427399

Dissociation Constants of Weak Acids from ab Initio Molecular Dynamics Using Metadynamics: Influence of the Inductive Effect and Hydrogen Bonding on p K a Values
journal, September 2014

  • Tummanapelli, Anil Kumar; Vasudevan, Sukumaran
  • The Journal of Physical Chemistry B, Vol. 118, Issue 47
  • DOI: 10.1021/jp5088898

Estimating successive pK a values of polyprotic acids from ab initio molecular dynamics using metadynamics: the dissociation of phthalic acid and its isomers
journal, January 2015

  • Tummanapelli, Anil Kumar; Vasudevan, Sukumaran
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 9
  • DOI: 10.1039/C4CP06000H

Dissociation Mechanism of Acetic Acid in Water
journal, September 2006

  • Park, Jung Mee; Laio, Alessandro; Iannuzzi, Marcella
  • Journal of the American Chemical Society, Vol. 128, Issue 35
  • DOI: 10.1021/ja060454h

Molecular dynamics with coupling to an external bath
journal, October 1984

  • Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.
  • The Journal of Chemical Physics, Vol. 81, Issue 8
  • DOI: 10.1063/1.448118

Lithium Ion Conduction in LiTi 2 (PO 4 ) 3 and Related Compounds Based on the NASICON Structure: A First-Principles Study
journal, July 2015


Diffusion of Li-ions in rutile. An ab initio study
journal, February 2003


Lithium ion migration pathways in LiTi2(PO4)3 and related materials
journal, November 1999

  • Nuspl, Gerhard; Takeuchi, Tomonari; Weiß, Armin
  • Journal of Applied Physics, Vol. 86, Issue 10
  • DOI: 10.1063/1.371550

Ionic conductivity and sinterability of lithium titanium phosphate system
journal, August 1990

  • Aono, Hiromichi; Sugimoto, Eisuke; Sadaoka, Yoshihiko
  • Solid State Ionics, Vol. 40-41, Issue Part 1, p. 38-42
  • DOI: 10.1016/0167-2738(90)90282-V

Structural and transport properties of lithium-conducting NASICON materials
journal, July 2018


Sol-gel synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
journal, May 2014

  • Kunshina, G. B.; Gromov, O. G.; Lokshin, E. P.
  • Russian Journal of Inorganic Chemistry, Vol. 59, Issue 5
  • DOI: 10.1134/S0036023614050118

Microstructure and ionic conductivity of Li1+xAlxTi2−x(PO4)3 NASICON glass-ceramics
journal, August 2010


Ionic Conductivity of LiTi 2 (PO 4 ) 3 Mixed with Lithium Salts
journal, March 1990

  • Aono, Hiromichi; Sugimoto, Eisuke; Sadaoka, Yoshihiko
  • Chemistry Letters, Vol. 19, Issue 3
  • DOI: 10.1246/Cl.1990.331

Lithium Ion Conductivities of NASICON-type Li1+xAlxTi2^|^minus;x(PO4)3 Solid Electrolytes Prepared from Amorphous Powder Using a Mechanochemical Method
journal, January 2014


Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method
journal, October 2013


Relativistic Hartree–Fock X-ray and electron scattering factors
journal, May 1968


X-ray scattering factors computed from numerical Hartree–Fock wave functions
journal, March 1968


Preparation and characterization of sol–gel derived high lithium ion conductive NZP-type ceramics Li1+x AlxTi2−x(PO4)3
journal, June 2015