skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets

Abstract

Not provided.

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Northwestern Univ., Evanston, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1538169
DOE Contract Number:  
SC0007456; SC0014330
Resource Type:
Journal Article
Journal Name:
Computational Materials Science
Additional Journal Information:
Journal Volume: 151; Journal Issue: C; Journal ID: ISSN 0927-0256
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
Materials Science

Citation Formats

Yang, Zijiang, Yabansu, Yuksel C., Al-Bahrani, Reda, Liao, Wei-keng, Choudhary, Alok N., Kalidindi, Surya R., and Agrawal, Ankit. Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets. United States: N. p., 2018. Web. doi:10.1016/j.commatsci.2018.05.014.
Yang, Zijiang, Yabansu, Yuksel C., Al-Bahrani, Reda, Liao, Wei-keng, Choudhary, Alok N., Kalidindi, Surya R., & Agrawal, Ankit. Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets. United States. doi:10.1016/j.commatsci.2018.05.014.
Yang, Zijiang, Yabansu, Yuksel C., Al-Bahrani, Reda, Liao, Wei-keng, Choudhary, Alok N., Kalidindi, Surya R., and Agrawal, Ankit. Wed . "Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets". United States. doi:10.1016/j.commatsci.2018.05.014.
@article{osti_1538169,
title = {Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets},
author = {Yang, Zijiang and Yabansu, Yuksel C. and Al-Bahrani, Reda and Liao, Wei-keng and Choudhary, Alok N. and Kalidindi, Surya R. and Agrawal, Ankit},
abstractNote = {Not provided.},
doi = {10.1016/j.commatsci.2018.05.014},
journal = {Computational Materials Science},
issn = {0927-0256},
number = C,
volume = 151,
place = {United States},
year = {2018},
month = {8}
}