skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sparse polynomial chaos expansions via compressed sensing and D-optimal design

Abstract

Not provided.

Authors:
ORCiD logo; ;
Publication Date:
Research Org.:
Univ. of Colorado, Boulder, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1538122
DOE Contract Number:  
SC0006402
Resource Type:
Journal Article
Journal Name:
Computer Methods in Applied Mechanics and Engineering
Additional Journal Information:
Journal Volume: 336; Journal Issue: C; Journal ID: ISSN 0045-7825
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
Engineering; Mathematics; Mechanics

Citation Formats

Diaz, Paul, Doostan, Alireza, and Hampton, Jerrad. Sparse polynomial chaos expansions via compressed sensing and D-optimal design. United States: N. p., 2018. Web. doi:10.1016/j.cma.2018.03.020.
Diaz, Paul, Doostan, Alireza, & Hampton, Jerrad. Sparse polynomial chaos expansions via compressed sensing and D-optimal design. United States. doi:10.1016/j.cma.2018.03.020.
Diaz, Paul, Doostan, Alireza, and Hampton, Jerrad. Sun . "Sparse polynomial chaos expansions via compressed sensing and D-optimal design". United States. doi:10.1016/j.cma.2018.03.020.
@article{osti_1538122,
title = {Sparse polynomial chaos expansions via compressed sensing and D-optimal design},
author = {Diaz, Paul and Doostan, Alireza and Hampton, Jerrad},
abstractNote = {Not provided.},
doi = {10.1016/j.cma.2018.03.020},
journal = {Computer Methods in Applied Mechanics and Engineering},
issn = {0045-7825},
number = C,
volume = 336,
place = {United States},
year = {2018},
month = {7}
}