skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A large-scale evaluation of automated metadata inference approaches on sensors from air handling units

Abstract

Not provided.

Authors:
;
Publication Date:
Research Org.:
Carnegie Mellon Univ., Pittsburgh, PA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1537927
DOE Contract Number:  
EE0006353
Resource Type:
Journal Article
Journal Name:
Advanced Engineering Informatics
Additional Journal Information:
Journal Volume: 37; Journal Issue: C; Journal ID: ISSN 1474-0346
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
Computer Science; Engineering

Citation Formats

Gao, Jingkun, and Bergés, Mario. A large-scale evaluation of automated metadata inference approaches on sensors from air handling units. United States: N. p., 2018. Web. doi:10.1016/j.aei.2018.04.010.
Gao, Jingkun, & Bergés, Mario. A large-scale evaluation of automated metadata inference approaches on sensors from air handling units. United States. doi:10.1016/j.aei.2018.04.010.
Gao, Jingkun, and Bergés, Mario. Wed . "A large-scale evaluation of automated metadata inference approaches on sensors from air handling units". United States. doi:10.1016/j.aei.2018.04.010.
@article{osti_1537927,
title = {A large-scale evaluation of automated metadata inference approaches on sensors from air handling units},
author = {Gao, Jingkun and Bergés, Mario},
abstractNote = {Not provided.},
doi = {10.1016/j.aei.2018.04.010},
journal = {Advanced Engineering Informatics},
issn = {1474-0346},
number = C,
volume = 37,
place = {United States},
year = {2018},
month = {8}
}