skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced Furfural Yields from Xylose Dehydration in the γ-Valerolactone/Water Solvent System at Elevated Temperatures

Abstract

Not provided.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison WI 53706 USA; U.S. Department of Energy, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Avenue Madison WI 53726 USA
  2. Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison WI 53706 USA
Publication Date:
Research Org.:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1537545
DOE Contract Number:  
FC02-07ER64494
Resource Type:
Journal Article
Journal Name:
ChemSusChem
Additional Journal Information:
Journal Volume: 11; Journal Issue: 14; Journal ID: ISSN 1864-5631
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
Chemistry; Science & Technology - Other Topics

Citation Formats

Sener, Canan, Motagamwala, Ali Hussain, Alonso, David Martin, and Dumesic, James A. Enhanced Furfural Yields from Xylose Dehydration in the γ-Valerolactone/Water Solvent System at Elevated Temperatures. United States: N. p., 2018. Web. doi:10.1002/cssc.201800730.
Sener, Canan, Motagamwala, Ali Hussain, Alonso, David Martin, & Dumesic, James A. Enhanced Furfural Yields from Xylose Dehydration in the γ-Valerolactone/Water Solvent System at Elevated Temperatures. United States. doi:10.1002/cssc.201800730.
Sener, Canan, Motagamwala, Ali Hussain, Alonso, David Martin, and Dumesic, James A. Tue . "Enhanced Furfural Yields from Xylose Dehydration in the γ-Valerolactone/Water Solvent System at Elevated Temperatures". United States. doi:10.1002/cssc.201800730.
@article{osti_1537545,
title = {Enhanced Furfural Yields from Xylose Dehydration in the γ-Valerolactone/Water Solvent System at Elevated Temperatures},
author = {Sener, Canan and Motagamwala, Ali Hussain and Alonso, David Martin and Dumesic, James A.},
abstractNote = {Not provided.},
doi = {10.1002/cssc.201800730},
journal = {ChemSusChem},
issn = {1864-5631},
number = 14,
volume = 11,
place = {United States},
year = {2018},
month = {6}
}

Works referenced in this record:

Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass
journal, January 2013

  • Alonso, David Martin; Wettstein, Stephanie G.; Mellmer, Max A.
  • Energy Environ. Sci., Vol. 6, Issue 1
  • DOI: 10.1039/C2EE23617F

Hybrid routes to biofuels
journal, June 2007

  • Schmidt, Lanny D.; Dauenhauer, Paul J.
  • Nature, Vol. 447, Issue 7147
  • DOI: 10.1038/447914a

Catalytic conversion of biomass to biofuels
journal, January 2010

  • Alonso, David Martin; Bond, Jesse Q.; Dumesic, James A.
  • Green Chemistry, Vol. 12, Issue 9, p. 1493-1513
  • DOI: 10.1039/c004654j

Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts
journal, January 2011

  • Climent, Maria J.; Corma, Avelino; Iborra, Sara
  • Green Chemistry, Vol. 13, Issue 3
  • DOI: 10.1039/c0gc00639d

Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry
journal, January 2013

  • Gu, Yanlong; Jérôme, François
  • Chemical Society Reviews, Vol. 42, Issue 24
  • DOI: 10.1039/c3cs60241a

Catalytic Conversion of Fructose to γ-Valerolactone in γ-Valerolactone
journal, September 2012

  • Qi, Long; Horváth, István T.
  • ACS Catalysis, Vol. 2, Issue 11
  • DOI: 10.1021/cs300428f

The Path Forward for Biofuels and Biomaterials
journal, January 2006

  • Ragauskas, Arthur J.; Williams, Charlotte K.; Davison, Brian H.
  • Science, Vol. 311, Issue 5760, p. 484-489
  • DOI: 10.1126/science.1114736

Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass: Furfural production from lignocellulosic biomass
journal, August 2013

  • Cai, Charles M.; Zhang, Taiying; Kumar, Rajeev
  • Journal of Chemical Technology & Biotechnology, Vol. 89, Issue 1
  • DOI: 10.1002/jctb.4168

Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels
journal, January 2016

  • Mariscal, R.; Maireles-Torres, P.; Ojeda, M.
  • Energy & Environmental Science, Vol. 9, Issue 4
  • DOI: 10.1039/C5EE02666K

Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates
journal, June 2005

  • Huber, George W.; Chheda, Juben N.; Barrett, Christopher J.
  • Science, Vol. 308, Issue 5727, p. 1446-1450
  • DOI: 10.1126/science.1111166

Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water
journal, June 2006

  • Barrett, C. J.; Chheda, J. N.; Huber, G. W.
  • Applied Catalysis B: Environmental, Vol. 66, Issue 1-2, p. 111-118
  • DOI: 10.1016/j.apcatb.2006.03.001

Production of bio-based furfural from xylose over a recyclable niobium phosphate (NbOPO 3 ) catalyst
journal, November 2017

  • Fang, Chengjiang; Wu, Weibo; Li, Hu
  • Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 39, Issue 21
  • DOI: 10.1080/15567036.2017.1402103

Kinetics of Furfural Destruction in Acidic Aqueous Media
journal, February 1948

  • Williams, D. L.; Dunlop, A. P.
  • Industrial & Engineering Chemistry, Vol. 40, Issue 2
  • DOI: 10.1021/ie50458a012

Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides
journal, January 2007

  • Chheda, Juben N.; Román-Leshkov, Yuriy; Dumesic, James A.
  • Green Chem., Vol. 9, Issue 4, p. 342-350
  • DOI: 10.1039/B611568C

Production of Furfural from Process-Relevant Biomass-Derived Pentoses in a Biphasic Reaction System
journal, June 2017

  • Mittal, Ashutosh; Black, Stuart K.; Vinzant, Todd B.
  • ACS Sustainable Chemistry & Engineering, Vol. 5, Issue 7
  • DOI: 10.1021/acssuschemeng.7b00215

Selective preparation of furfural from xylose over microporous solid acid catalysts
journal, January 1998


Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts
journal, January 2005


Conversion of Hemicellulose to Furfural and Levulinic Acid using Biphasic Reactors with Alkylphenol Solvents
journal, January 2012

  • Gürbüz, Elif I.; Wettstein, Stephanie G.; Dumesic, James A.
  • ChemSusChem, Vol. 5, Issue 2, p. 383-387
  • DOI: 10.1002/cssc.201100608

A new methodology for the production of furfural as a renewable energy source from bagasse in acidic aqueous media
journal, December 2017

  • Yazdizadeh, M.; Nasr, M. R. Jafari; Safekordi, A. K.
  • Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 40, Issue 2
  • DOI: 10.1080/15567036.2016.1248801

Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries
journal, January 2011

  • Xing, Rong; Qi, Wei; Huber, George W.
  • Energy & Environmental Science, Vol. 4, Issue 6
  • DOI: 10.1039/c1ee01022k

Furfural production in biphasic media using an acidic ionic liquid as a catalyst
journal, November 2016


Furfural production using ionic liquids: A review
journal, February 2016


Furfural production from xylose + glucose feedings and simultaneous N2-stripping
journal, January 2012

  • Agirrezabal-Telleria, I.; Requies, J.; Güemez, M. B.
  • Green Chemistry, Vol. 14, Issue 11
  • DOI: 10.1039/c2gc36092f

Dehydration of xylose to furfural using a Lewis or Brönsted acid catalyst and N2 stripping
journal, July 2013

  • Agirrezabal-Telleria, Iker; GarcÍA-Sancho, Cristina; Maireles-Torres, Pedro
  • Chinese Journal of Catalysis, Vol. 34, Issue 7
  • DOI: 10.1016/S1872-2067(12)60599-3

Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system
journal, March 2018


Conversion of Hemicellulose into Furfural Using Solid Acid Catalysts in γ-Valerolactone
journal, December 2012

  • Gürbüz, Elif I.; Gallo, Jean Marcel R.; Alonso, David Martin
  • Angewandte Chemie International Edition, Vol. 52, Issue 4, p. 1270-1274
  • DOI: 10.1002/anie.201207334

Conversion of Hemicellulose into Furfural Using Solid Acid Catalysts in γ-Valerolactone
journal, December 2012

  • Gürbüz, Elif I.; Gallo, Jean Marcel R.; Alonso, David Martin
  • Angewandte Chemie, Vol. 125, Issue 4
  • DOI: 10.1002/ange.201207334

Solvent Effects in Acid-Catalyzed Biomass Conversion Reactions
journal, September 2014

  • Mellmer, Max A.; Sener, Canan; Gallo, Jean Marcel R.
  • Angewandte Chemie International Edition, Vol. 53, Issue 44
  • DOI: 10.1002/anie.201408359

Solvent Effects in Acid-Catalyzed Biomass Conversion Reactions
journal, September 2014

  • Mellmer, Max A.; Sener, Canan; Gallo, Jean Marcel R.
  • Angewandte Chemie, Vol. 126, Issue 44
  • DOI: 10.1002/ange.201408359

Conversion of C5 Carbohydrates into Furfural Catalyzed by SO 3 H-Functionalized Ionic Liquid in Renewable γ-Valerolactone
journal, March 2017


Production of furfural from xylose and corn stover catalyzed by a novel porous carbon solid acid in γ-valerolactone
journal, January 2017

  • Zhu, Yuanshuai; Li, Wenzhi; Lu, Yijuan
  • RSC Advances, Vol. 7, Issue 48
  • DOI: 10.1039/C7RA03995F

Enhanced furfural production from raw corn stover employing a novel heterogeneous acid catalyst
journal, December 2017


Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization
journal, May 2017

  • Alonso, David Martin; Hakim, Sikander H.; Zhou, Shengfei
  • Science Advances, Vol. 3, Issue 5
  • DOI: 10.1126/sciadv.1603301

Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating
journal, January 2010

  • Weingarten, Ronen; Cho, Joungmo; Conner, Jr., Wm. Curtis
  • Green Chemistry, Vol. 12, Issue 8
  • DOI: 10.1039/c003459b

Proton mobility in water at high temperatures and pressures
journal, January 1965

  • Franck, E. U.; Hartmann, D.; Hensel, F.
  • Discussions of the Faraday Society, Vol. 39
  • DOI: 10.1039/df9653900200

Second Dissociation Constant of Sulfuric Acid from 25 to 350° Evaluated from Solubilities of Calcium Sulfate in Sulfuric Acid Solutions 1,2
journal, December 1966

  • Marshall, William L.; Jones, Ernest V.
  • The Journal of Physical Chemistry, Vol. 70, Issue 12
  • DOI: 10.1021/j100884a045

Chloride ions enhance furfural formation from d-xylose in dilute aqueous acidic solutions
journal, January 2010

  • Marcotullio, Gianluca; De Jong, Wiebren
  • Green Chemistry, Vol. 12, Issue 10
  • DOI: 10.1039/b927424c

Kinetics of Xylose Dehydration into Furfural in Formic Acid
journal, April 2012

  • Lamminpää, Kaisa; Ahola, Juha; Tanskanen, Juha
  • Industrial & Engineering Chemistry Research, Vol. 51, Issue 18
  • DOI: 10.1021/ie2018367

Rheometry of coarse biomass at high temperature and pressure
journal, April 2017


Lignin monomer production integrated into the γ-valerolactone sugar platform
journal, January 2015

  • Luterbacher, Jeremy S.; Azarpira, Ali; Motagamwala, Ali H.
  • Energy & Environmental Science, Vol. 8, Issue 9
  • DOI: 10.1039/C5EE01322D