skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries

Abstract

Not provided.

Authors:
 [1];  [1];  [1];  [2];  [2];  [2];  [2];  [1]; ORCiD logo [1]
  1. Maryland Energy Innovation Institute, University of Maryland, College Park MD 20742 USA; Department of Materials Science and Engineering, University of Maryland, College Park MD 20742 USA
  2. Department of Materials Science and Engineering, University of Maryland, College Park MD 20742 USA
Publication Date:
Research Org.:
Univ. of Maryland, College Park, MD (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1537458
DOE Contract Number:  
EE0006860
Resource Type:
Journal Article
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Volume: 56; Journal Issue: 47; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
Chemistry

Citation Formats

Fu, Kun Kelvin, Gong, Yunhui, Fu, Zhezhen, Xie, Hua, Yao, Yonggang, Liu, Boyang, Carter, Marcus, Wachsman, Eric, and Hu, Liangbing. Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries. United States: N. p., 2017. Web. doi:10.1002/anie.201708637.
Fu, Kun Kelvin, Gong, Yunhui, Fu, Zhezhen, Xie, Hua, Yao, Yonggang, Liu, Boyang, Carter, Marcus, Wachsman, Eric, & Hu, Liangbing. Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries. United States. doi:10.1002/anie.201708637.
Fu, Kun Kelvin, Gong, Yunhui, Fu, Zhezhen, Xie, Hua, Yao, Yonggang, Liu, Boyang, Carter, Marcus, Wachsman, Eric, and Hu, Liangbing. Thu . "Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries". United States. doi:10.1002/anie.201708637.
@article{osti_1537458,
title = {Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries},
author = {Fu, Kun Kelvin and Gong, Yunhui and Fu, Zhezhen and Xie, Hua and Yao, Yonggang and Liu, Boyang and Carter, Marcus and Wachsman, Eric and Hu, Liangbing},
abstractNote = {Not provided.},
doi = {10.1002/anie.201708637},
journal = {Angewandte Chemie (International Edition)},
issn = {1433-7851},
number = 47,
volume = 56,
place = {United States},
year = {2017},
month = {10}
}

Works referenced in this record:

Lithium batteries: Status, prospects and future
journal, May 2010


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Metallic anodes for next generation secondary batteries
journal, January 2013

  • Kim, Hansu; Jeong, Goojin; Kim, Young-Ugk
  • Chemical Society Reviews, Vol. 42, Issue 23
  • DOI: 10.1039/c3cs60177c

Design principles for solid-state lithium superionic conductors
journal, August 2015

  • Wang, Yan; Richards, William Davidson; Ong, Shyue Ping
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4369

A review of lithium and non-lithium based solid state batteries
journal, May 2015


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Improving battery safety by early detection of internal shorting with a bifunctional separator
journal, October 2014

  • Wu, Hui; Zhuo, Denys; Kong, Desheng
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6193

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
journal, March 2016

  • Liu, Yayuan; Lin, Dingchang; Liang, Zheng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10992

Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

A high performance lithium-ion sulfur battery based on a Li 2 S cathode using a dual-phase electrolyte
journal, January 2015

  • Wang, Lina; Wang, Yonggang; Xia, Yongyao
  • Energy & Environmental Science, Vol. 8, Issue 5
  • DOI: 10.1039/C5EE00058K

A Thermally Conductive Separator for Stable Li Metal Anodes
journal, August 2015


Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte
journal, July 2016

  • Zhou, Weidong; Wang, Shaofei; Li, Yutao
  • Journal of the American Chemical Society, Vol. 138, Issue 30
  • DOI: 10.1021/jacs.6b05341

Polysulfide-Shuttle Control in Lithium-Sulfur Batteries with a Chemically/Electrochemically Compatible NaSICON-Type Solid Electrolyte
journal, August 2016

  • Yu, Xingwen; Bi, Zhonghe; Zhao, Feng
  • Advanced Energy Materials, Vol. 6, Issue 24
  • DOI: 10.1002/aenm.201601392

Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts
journal, March 2016

  • Busche, Martin R.; Drossel, Thomas; Leichtweiss, Thomas
  • Nature Chemistry, Vol. 8, Issue 5
  • DOI: 10.1038/nchem.2470

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries
journal, June 2016

  • Fu, Kun (Kelvin); Gong, Yunhui; Dai, Jiaqi
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 26
  • DOI: 10.1073/pnas.1600422113

Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects
journal, May 2017


Garnet-type solid-state fast Li ion conductors for Li batteries: critical review
journal, January 2014

  • Thangadurai, Venkataraman; Narayanan, Sumaletha; Pinzaru, Dana
  • Chemical Society Reviews, Vol. 43, Issue 13
  • DOI: 10.1039/c4cs00020j

First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries
journal, January 2016

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • Journal of Materials Chemistry A, Vol. 4, Issue 9
  • DOI: 10.1039/C5TA08574H

Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte
journal, September 2016

  • Luo, Wei; Gong, Yunhui; Zhu, Yizhou
  • Journal of the American Chemical Society, Vol. 138, Issue 37
  • DOI: 10.1021/jacs.6b06777

Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes
journal, December 2016


Interface-Engineered All-Solid-State Li-Ion Batteries Based on Garnet-Type Fast Li + Conductors
journal, July 2016

  • van den Broek, Jan; Afyon, Semih; Rupp, Jennifer L. M.
  • Advanced Energy Materials, Vol. 6, Issue 19
  • DOI: 10.1002/aenm.201600736

A Tale of Two Sites: On Defining the Carrier Concentration in Garnet-Based Ionic Conductors for Advanced Li Batteries
journal, March 2015

  • Thompson, Travis; Sharafi, Asma; Johannes, Michelle D.
  • Advanced Energy Materials, Vol. 5, Issue 11
  • DOI: 10.1002/aenm.201500096

Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie International Edition, Vol. 46, Issue 41, p. 7778-7781
  • DOI: 10.1002/anie.200701144

Schnelle Lithiumionenleitung in granatartigem Li7La3Zr2O12
journal, October 2007

  • Murugan, Ramaswamy; Thangadurai, Venkataraman; Weppner, Werner
  • Angewandte Chemie, Vol. 119, Issue 41
  • DOI: 10.1002/ange.200701144

Highly Conductive Li Garnets by a Multielement Doping Strategy
journal, March 2015


Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries
journal, March 2017

  • Wu, Jian-Fang; Pang, Wei Kong; Peterson, Vanessa K.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 14
  • DOI: 10.1021/acsami.7b00614

Effect of Surface Microstructure on Electrochemical Performance of Garnet Solid Electrolytes
journal, January 2015

  • Cheng, Lei; Chen, Wei; Kunz, Martin
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 3
  • DOI: 10.1021/am508111r

The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes
journal, January 2014

  • Cheng, Lei; Crumlin, Ethan J.; Chen, Wei
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 34
  • DOI: 10.1039/C4CP02921F

Li 7 La 3 Zr 2 O 12 Interface Modification for Li Dendrite Prevention
journal, April 2016

  • Tsai, Chih-Long; Roddatis, Vladimir; Chandran, C. Vinod
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 16
  • DOI: 10.1021/acsami.6b00831

Investigating the all-solid-state batteries based on lithium garnets and a high potential cathode – LiMn 1.5 Ni 0.5 O 4
journal, January 2016

  • Hänsel, Christian; Afyon, Semih; Rupp, Jennifer L. M.
  • Nanoscale, Vol. 8, Issue 43
  • DOI: 10.1039/C6NR06955J

Atomic Layer Deposition of the Solid Electrolyte Garnet Li 7 La 3 Zr 2 O 12
journal, April 2017


Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact
journal, June 2017


Garnet Solid Electrolyte Protected Li-Metal Batteries
journal, May 2017

  • Liu, Boyang; Gong, Yunhui; Fu, Kun
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 22
  • DOI: 10.1021/acsami.7b03887

Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries
journal, January 2017

  • Fu, Kun (Kelvin); Gong, Yunhui; Hitz, Gregory T.
  • Energy & Environmental Science, Vol. 10, Issue 7
  • DOI: 10.1039/C7EE01004D

Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries
journal, December 2016

  • Li, Yutao; Xu, Biyi; Xu, Henghui
  • Angewandte Chemie International Edition, Vol. 56, Issue 3
  • DOI: 10.1002/anie.201608924

Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries
journal, December 2016


Hybrid Lithium–Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte
journal, July 2015

  • Yu, Xingwen; Bi, Zhonghe; Zhao, Feng
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 30
  • DOI: 10.1021/acsami.5b04209

A shuttle effect free lithium sulfur battery based on a hybrid electrolyte
journal, January 2014

  • Wang, Qingsong; Jin, Jun; Wu, Xiangwei
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 39
  • DOI: 10.1039/C4CP03694H