skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Charged compact boson stars and shells in the presence of a cosmological constant

Abstract

Not provided.

Authors:
; ;
Publication Date:
Research Org.:
Iowa State Univ., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1536199
DOE Contract Number:  
FG02-87ER40371
Resource Type:
Journal Article
Journal Name:
Physical Review D
Additional Journal Information:
Journal Volume: 94; Journal Issue: 12; Journal ID: ISSN 2470-0010
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
Astronomy & Astrophysics; Physics

Citation Formats

Kumar, Sanjeev, Kulshreshtha, Usha, and Kulshreshtha, Daya Shankar. Charged compact boson stars and shells in the presence of a cosmological constant. United States: N. p., 2016. Web. doi:10.1103/physrevd.94.125023.
Kumar, Sanjeev, Kulshreshtha, Usha, & Kulshreshtha, Daya Shankar. Charged compact boson stars and shells in the presence of a cosmological constant. United States. doi:10.1103/physrevd.94.125023.
Kumar, Sanjeev, Kulshreshtha, Usha, and Kulshreshtha, Daya Shankar. Thu . "Charged compact boson stars and shells in the presence of a cosmological constant". United States. doi:10.1103/physrevd.94.125023.
@article{osti_1536199,
title = {Charged compact boson stars and shells in the presence of a cosmological constant},
author = {Kumar, Sanjeev and Kulshreshtha, Usha and Kulshreshtha, Daya Shankar},
abstractNote = {Not provided.},
doi = {10.1103/physrevd.94.125023},
journal = {Physical Review D},
issn = {2470-0010},
number = 12,
volume = 94,
place = {United States},
year = {2016},
month = {12}
}

Works referenced in this record:

Stable States of a Scalar Particle in Its Own Gravational Field
journal, April 1968


Klein-Gordon Geon
journal, August 1968


Systems of Self-Gravitating Particles in General Relativity and the Concept of an Equation of State
journal, November 1969


Boson stars
journal, November 1992


Nontopological solitons
journal, November 1992


Boson stars: alternatives to primordial black holes?
journal, January 2000


Dynamical Boson Stars
journal, May 2012

  • Liebling, Steven L.; Palenzuela, Carlos
  • Living Reviews in Relativity, Vol. 15, Issue 1
  • DOI: 10.12942/lrr-2012-6

Class of scalar-field soliton solutions in three space dimensions
journal, May 1976


Q-balls
journal, December 1985


Charged boson stars and black holes
journal, May 2009


Boson shells harboring charged black holes
journal, November 2010


Compact boson stars
journal, July 2012


Glueball condensates as holographic duals of supersymmetric Q -balls and boson stars
journal, November 2012


Compact (A)dS boson stars and shells
journal, December 2013


New results on charged compact boson stars
journal, May 2016

  • Kumar, Sanjeev; Kulshreshtha, Usha; Kulshreshtha, Daya Shankar
  • Physical Review D, Vol. 93, Issue 10
  • DOI: 10.1103/PhysRevD.93.101501

Boson stars in a theory of complex scalar fields coupled to the U (1) gauge field and gravity
journal, August 2014


Boson stars in a theory of complex scalar field coupled to gravity
journal, June 2015

  • Kumar, Sanjeev; Kulshreshtha, Usha; Kulshreshtha, Daya Shankar
  • General Relativity and Gravitation, Vol. 47, Issue 7
  • DOI: 10.1007/s10714-015-1918-0

Boson stars with negative cosmological constant
journal, August 2003


Spinning scalar solitons in anti-de Sitter spacetime
journal, October 2012


Q-Stars in Anti de Sitter Spacetime
journal, August 2004


Stability of charged solitons and formation of boson stars in five-dimensional anti-de Sitter spacetime
journal, May 2013


Charged boson stars
journal, July 2013


Charged Q -balls and boson stars and dynamics of charged test particles
journal, April 2014


Spinning gauged boson stars in anti-de Sitter spacetime
journal, January 2014


Boson stars with nontrivial topology
journal, December 2014

  • Dzhunushaliev, Vladimir; Folomeev, Vladimir; Hoffmann, Christian
  • Physical Review D, Vol. 90, Issue 12
  • DOI: 10.1103/PhysRevD.90.124038

Compact Q -balls in the complex signum-Gordon model
journal, May 2008


Compact Q -balls and Q -shells in a scalar electrodynamics
journal, February 2009


<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2012-01-01">January 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Arodź, H.; Karkowski, J.; Świerczyński, Z.</span> </li> <li> Acta Physica Polonica B, Vol. 43, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.5506/APhysPolB.43.79" class="text-muted" target="_blank" rel="noopener noreferrer">10.5506/APhysPolB.43.79<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.4310/ATMP.1998.v2.n2.a1" target="_blank" rel="noopener noreferrer" class="name">The large $N$ limit of superconformal field theories and supergravity<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1998-01-01">January 1998</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Maldacena, Juan</span> </li> <li> Advances in Theoretical and Mathematical Physics, Vol. 2, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.4310/ATMP.1998.v2.n2.a1" class="text-muted" target="_blank" rel="noopener noreferrer">10.4310/ATMP.1998.v2.n2.a1<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.4310/ATMP.1998.v2.n2.a2" target="_blank" rel="noopener noreferrer" class="name">Anti de Sitter space and holography<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1998-01-01">January 1998</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Witten, Edward</span> </li> <li> Advances in Theoretical and Mathematical Physics, Vol. 2, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.4310/ATMP.1998.v2.n2.a2" class="text-muted" target="_blank" rel="noopener noreferrer">10.4310/ATMP.1998.v2.n2.a2<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/0253-6102/57/4/21" target="_blank" rel="noopener noreferrer" class="name">AdS/QCD and Applications of Light-Front Holography<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2012-04-01">April 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Brodsky, Stanley J.; Cao, Fu-Guang; de Téramond, Guy F.</span> </li> <li> Communications in Theoretical Physics, Vol. 57, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/0253-6102/57/4/21" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/0253-6102/57/4/21<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="fa fa-angle-left"></span></a><ul class="pagination d-inline-block" style="padding-left:.2em;"></ul><a class="pure-button next page" href="#" rel="next"><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (31)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar records in OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="0" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1424750-some-new-results-charged-compact-boson-stars" itemprop="url">Some new results on charged compact boson stars</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Kumar, Sanjeev</span> ; <span class="author">Kulshreshtha, Usha</span> ; <span class="author">Kulshreshtha, Daya Shankar</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physics Letters. Section B</span> </span> </div> <div class="abstract">In this work we present some new results obtained in a study of the phase diagram of charged compact boson stars in a theory involving a complex scalar field with a conical potential coupled to a U(1) gauge field and gravity. We here obtain new bifurcation points in this model. We present a detailed discussion of the various regions of the phase diagram with respect to the bifurcation points. The theory is seen to contain rich physics in a particular domain of the phase diagram.</div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 3<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1016/j.physletb.2017.07.041" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1424750" data-product-type="Journal Article" data-product-subtype="AM" >10.1016/j.physletb.2017.07.041</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/servlets/purl/1424750" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1424750" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/21010900-charged-shells-lovelock-gravity-hamiltonian-treatment-physical-implications" itemprop="url">Charged shells in Lovelock gravity: Hamiltonian treatment and physical implications</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Dias, Goncalo A. S.</span> ; <span class="author">Gao, Sijie</span> ; <span class="author">Lemos, Jose P. S.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physical Review. D, Particles Fields</span> </span> </div> <div class="abstract">Using a Hamiltonian treatment, charged thin shells, static and dynamic, in spherically symmetric spacetimes, containing black holes or other specific types of solutions, in d dimensional Lovelock-Maxwell theory are studied. The free coefficients that appear in the Lovelock theory are chosen to obtain a sensible theory, with a negative cosmological constant appearing naturally. Using an Arnowitt-Deser-Misner (ADM) description, one then finds the Hamiltonian for the charged shell system. Variation of the Hamiltonian with respect to the canonical coordinates and conjugate momenta, and the relevant Lagrange multipliers, yields the dynamic and constraint equations. The vacuum solutions of these equations yield a<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> division of the theory into two branches, namely d-2k-1>0 (which includes general relativity, Born-Infeld type theories, and other generic gravities) and d-2k-1=0 (which includes Chern-Simons type theories), where k is the parameter giving the highest power of the curvature in the Lagrangian. There appears an additional parameter {chi}=(-1){sup k+1}, which gives the character of the vacuum solutions. For {chi}=1 the solutions, being of the type found in general relativity, have a black hole character. For {chi}=-1 the solutions, being of a new type not found in general relativity, have a totally naked singularity character. Since there is a negative cosmological constant, the spacetimes are asymptotically anti-de Sitter (AdS), and AdS when empty (for zero cosmological constant the spacetimes are asymptotically flat). The integration from the interior to the exterior vacuum regions through the thin shell takes care of a smooth junction, showing the power of the method. The subsequent analysis is divided into two cases: static charged thin shell configurations, and gravitationally collapsing charged dust shells (expanding shells are the time reversal of the collapsing shells). In the collapsing case, into an initially nonsingular spacetime with generic character or an empty interior, it is proved that the cosmic censorship is definitely upheld. Physical implications of the dynamics of such shells in a large extra dimension world scenario are also drawn. One concludes that, if such a large extra dimension scenario is correct, one can extract enough information from the outcome of those collisions as to know, not only the actual dimension of spacetime, but also which particular Lovelock gravity, general relativity or any other, is the correct one at these scales, in brief, to know d and k.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1103/PHYSREVD.75.024030" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="21010900" data-product-type="Journal Article" data-product-subtype="" >10.1103/PHYSREVD.75.024030</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/21413222-quasiblack-holes-pressure-relativistic-charged-spheres-frozen-stars" itemprop="url">Quasiblack holes with pressure: Relativistic charged spheres as the frozen stars</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Lemos, Jose P. S.</span> ; <span class="author">Zanchin, Vilson T.</span> ; <span class="author">Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia 166, 09210-170 Santo Andre, SP, Brazil and Coordenadoria de Astronomia e Astrofisica, Observatorio Nacional-MCT, Rua General Jose Cristino 77, 20921-400 Rio de Janeiro</span> <span class="text-muted pubdata"> - Physical Review. D, Particles Fields</span> </span> </div> <div class="abstract">In general relativity coupled to Maxwell's electromagnetism and charged matter, when the gravitational potential W{sup 2} and the electric potential field {phi} obey a relation of the form W{sup 2}=a(-{epsilon}{phi}+b){sup 2}+c, where a, b, and c are arbitrary constants, and {epsilon}={+-}1 (the speed of light c and Newton's constant G are put to one), a class of very interesting electrically charged systems with pressure arises. We call the relation above between W and {phi}, the Weyl-Guilfoyle relation, and it generalizes the usual Weyl relation, for which a=1. For both, Weyl and Weyl-Guilfoyle relations, the electrically charged fluid, if present, may<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> have nonzero pressure. Fluids obeying the Weyl-Guilfoyle relation are called Weyl-Guilfoyle fluids. These fluids, under the assumption of spherical symmetry, exhibit solutions which can be matched to the electrovacuum Reissner-Nordstroem spacetime to yield global asymptotically flat cold charged stars. We show that a particular spherically symmetric class of stars found by Guilfoyle has a well-behaved limit which corresponds to an extremal Reissner-Nordstroem quasiblack hole with pressure, i.e., in which the fluid inside the quasihorizon has electric charge and pressure, and the geometry outside the quasihorizon is given by the extremal Reissner-Nordstroem metric. The main physical properties of such charged stars and quasiblack holes with pressure are analyzed. An important development provided by these stars and quasiblack holes is that without pressure the solutions, Majumdar-Papapetrou solutions, are unstable to kinetic perturbations. Solutions with pressure may avoid this instability. If stable, these cold quasiblack holes with pressure, i.e., these compact relativistic charged spheres, are really frozen stars.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1103/PHYSREVD.81.124016" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="21413222" data-product-type="Journal Article" data-product-subtype="" >10.1103/PHYSREVD.81.124016</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/5121310-quantum-thermal-effects-higher-dimensions" itemprop="url">Quantum and thermal effects in higher dimensions</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Thesis/Dissertation</small><span class="authors"> <span class="author">Roth, B.D.B.</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">Two examples of higher dimensional theories are considered at the one-loop level for quantum and thermal effects: the five dimensional Kaluza-Klein model and the 26-dimensional closed bosonic string. In the Kaluza-Klein universe with single compact spatial dimension of length L{sub 5}, the effective potential for L{sub 5} is found. If initially L{sub 5} is less than a temperature-dependent critical length, L{sub 5} will shrink at least down to a length comparable to the Planck length. This instability has been noted by Appelquist and Chodos in the zero-temperature limit. If, on the other hand, L{sub 5} starts out larger than the<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> critical length, it will tend to increase. This result suggests that the temperature effects may play an important role in Kaluza-Klein cosmological models. The effects of quantized fermion and boson fields are then introduced. It is shown that massive fermions, as well as massive twisted bosons, can stabilize the compact fifth dimension against collapse caused by Casimir forces, provided that the sum of an induced cosmological constant and the bare cosmological constant is adjusted to be non-negative. Finally, the finite temperature string path integral for interacting closed bosonic strings is examined, following the work of Polchinski. The winding number contribution to the classical action is found for arbitrary genus. It is shown that on an arbitrary genus world sheet all windings of the fields around the compact time direction can be rotated into a single cycle. The modular invariance of this result is demonstrated.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1426332-bottom-quark-forward-backward-asymmetry-dark-matter-lhc" itemprop="url">Bottom-quark forward-backward asymmetry, dark matter, and the LHC</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Liu, Da</span> ; <span class="author">Liu, Jia</span> ; <span class="author">Wagner, Carlos E. M.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physical Review D</span> </span> </div> <div class="abstract">The LEP experiment at CERN provided accurate measurements of the $Z$ neutral gauge boson properties. Although all measurements agree well with the standard model (SM) predictions, the forward backward asymmetry of the bottom-quark remains almost $3σ$ away from the SM value. We proposed that this anomaly may be explained by the existence of a new <em>U</em>(1) <sub><em>D</em></sub> gauge boson, which couples with opposite charges to the right-handed components of the bottom and charm quarks. Cancellation of gauge anomalies demands the presence of a vector-like singlet charged lepton as well as a neutral Dirac (or Majorana) particle that provides a dark<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> matter candidate. Constraints from precision measurements imply that the mass of the new gauge boson should be around 115 GeV. We discuss the experimental constraints on this scenario, including the existence of a di-jet resonance excess at an invariant mass similar to the mass of this new gauge boson, observed in boosted topologies at the CMS experiment.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 5<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1103/PhysRevD.97.055021" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1426332" data-product-type="Journal Article" data-product-subtype="PA" >10.1103/PhysRevD.97.055021</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9; /* padding-top: 0.5rem; */"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator" /> <div class="text-center" style="margin-top:1.25rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item d-block d-inline-small"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item d-block d-inline-small"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item d-block d-inline-small"> <a href="/"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="text-center small" style="margin-top:0.5em;margin-bottom:2.0rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="/disclaim" class="pure-menu-link"><span class="fa fa-institution"></span> Website Policies <span class="d-none d-sm-inline" style="color:#737373;">/ Important Links</span></a></li> <li class="pure-menu-item"><a href="/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span> Contact Us</a></li> <li class="d-block d-md-none mb-1"></li> <li class="pure-menu-item"><a href="https://www.facebook.com/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-facebook" style=""></span></a></li> <li class="pure-menu-item"><a href="https://twitter.com/OSTIgov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-twitter" style=""></span></a></li> <li class="pure-menu-item"><a href="https://www.youtube.com/user/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-youtube-play" style=""></span></a></li> </ul> </div> </div> </div> </div> </footer> <link href="/css/ostigov.fonts.191107.1502.css" rel="stylesheet"> <script src="/js/ostigov.191107.1502.js"></script><noscript></noscript> <script defer src="/js/ostigov.biblio.191107.1502.js"></script><noscript></noscript> <script defer src="/js/lity.js"></script><noscript></noscript> <script async type="text/javascript" src="/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript> </body> <!-- OSTI.GOV v.191107.1502 --> </html>