skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CO 2 reduction or HCO 2 oxidation? Solvent-dependent thermochemistry of a nickel hydride complex

Abstract

The hydricity (ΔG H−) of a newly synthesized nickel hydride was experimentally determined in acetonitrile (50.6 kcal mol −1), dimethyl sulfoxide (47.1 kcal mol −1), and water (22.8 kcal mol −1).

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Department of Chemistry; University of California; Irvine; USA
Publication Date:
Research Org.:
Univ. of California, Irvine, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1535177
DOE Contract Number:  
SC0012150
Resource Type:
Journal Article
Journal Name:
ChemComm
Additional Journal Information:
Journal Volume: 53; Journal Issue: 53; Journal ID: ISSN 1359-7345
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
Chemistry

Citation Formats

Ceballos, Bianca M., Tsay, Charlene, and Yang, Jenny Y. CO 2 reduction or HCO 2 − oxidation? Solvent-dependent thermochemistry of a nickel hydride complex. United States: N. p., 2017. Web. doi:10.1039/c7cc02511d.
Ceballos, Bianca M., Tsay, Charlene, & Yang, Jenny Y. CO 2 reduction or HCO 2 − oxidation? Solvent-dependent thermochemistry of a nickel hydride complex. United States. doi:10.1039/c7cc02511d.
Ceballos, Bianca M., Tsay, Charlene, and Yang, Jenny Y. Sun . "CO 2 reduction or HCO 2 − oxidation? Solvent-dependent thermochemistry of a nickel hydride complex". United States. doi:10.1039/c7cc02511d.
@article{osti_1535177,
title = {CO 2 reduction or HCO 2 − oxidation? Solvent-dependent thermochemistry of a nickel hydride complex},
author = {Ceballos, Bianca M. and Tsay, Charlene and Yang, Jenny Y.},
abstractNote = {The hydricity (ΔGH−) of a newly synthesized nickel hydride was experimentally determined in acetonitrile (50.6 kcal mol−1), dimethyl sulfoxide (47.1 kcal mol−1), and water (22.8 kcal mol−1).},
doi = {10.1039/c7cc02511d},
journal = {ChemComm},
issn = {1359-7345},
number = 53,
volume = 53,
place = {United States},
year = {2017},
month = {1}
}

Works referenced in this record:

CO 2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO 2 Reduction
journal, August 2015


Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts
journal, February 2017


Formic acid as a hydrogen storage material – development of homogeneous catalysts for selective hydrogen release
journal, January 2016

  • Mellmann, Dörthe; Sponholz, Peter; Junge, Henrik
  • Chemical Society Reviews, Vol. 45, Issue 14
  • DOI: 10.1039/C5CS00618J

Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO 2 Fixation
journal, June 2013

  • Appel, Aaron M.; Bercaw, John E.; Bocarsly, Andrew B.
  • Chemical Reviews, Vol. 113, Issue 8
  • DOI: 10.1021/cr300463y

Hydrogen energy future with formic acid: a renewable chemical hydrogen storage system
journal, January 2016

  • Singh, Ashish Kumar; Singh, Suryabhan; Kumar, Abhinav
  • Catalysis Science & Technology, Vol. 6, Issue 1
  • DOI: 10.1039/C5CY01276G

Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry
journal, May 2016

  • Klankermayer, Jürgen; Wesselbaum, Sebastian; Beydoun, Kassem
  • Angewandte Chemie International Edition, Vol. 55, Issue 26
  • DOI: 10.1002/anie.201507458

Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases
journal, August 2013

  • Fujita, Etsuko; Muckerman, James T.; Himeda, Yuichiro
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1827, Issue 8-9
  • DOI: 10.1016/j.bbabio.2012.11.004

A Cobalt-Based Catalyst for the Hydrogenation of CO 2 under Ambient Conditions
journal, July 2013

  • Jeletic, Matthew S.; Mock, Michael T.; Appel, Aaron M.
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja406601v

Effective Pincer Cobalt Precatalysts for Lewis Acid Assisted CO 2 Hydrogenation
journal, July 2016


Well-Defined Iron Catalyst for Improved Hydrogenation of Carbon Dioxide and Bicarbonate
journal, December 2012

  • Ziebart, Carolin; Federsel, Christopher; Anbarasan, Pazhamalai
  • Journal of the American Chemical Society, Vol. 134, Issue 51
  • DOI: 10.1021/ja307924a

Low-Pressure Hydrogenation of Carbon Dioxide Catalyzed by an Iron Pincer Complex Exhibiting Noble Metal Activity
journal, September 2011

  • Langer, Robert; Diskin-Posner, Yael; Leitus, Gregory
  • Angewandte Chemie International Edition, Vol. 50, Issue 42
  • DOI: 10.1002/anie.201104542

A Process for the Synthesis of Formic Acid by CO2 Hydrogenation: Thermodynamic Aspects and the Role of CO
journal, June 2011

  • Schaub, Thomas; Paciello, Rocco A.
  • Angewandte Chemie International Edition, Vol. 50, Issue 32
  • DOI: 10.1002/anie.201101292

Catalytic CO 2 Hydrogenation to Formate by a Ruthenium Pincer Complex
journal, September 2013

  • Huff, Chelsea A.; Sanford, Melanie S.
  • ACS Catalysis, Vol. 3, Issue 10
  • DOI: 10.1021/cs400609u

Continuous-Flow Hydrogenation of Carbon Dioxide to Pure Formic Acid using an Integrated scCO 2 Process with Immobilized Catalyst and Base
journal, July 2012

  • Wesselbaum, Sebastian; Hintermair, Ulrich; Leitner, Walter
  • Angewandte Chemie International Edition, Vol. 51, Issue 34
  • DOI: 10.1002/anie.201203185

Catalytic Hydrogenation of Carbon Dioxide and Bicarbonates with a Well-Defined Cobalt Dihydrogen Complex
journal, December 2011

  • Federsel, Christopher; Ziebart, Carolin; Jackstell, Ralf
  • Chemistry - A European Journal, Vol. 18, Issue 1
  • DOI: 10.1002/chem.201101343

Cp*Co(III) Catalysts with Proton-Responsive Ligands for Carbon Dioxide Hydrogenation in Aqueous Media
journal, October 2013

  • Badiei, Yosra M.; Wang, Wan-Hui; Hull, Jonathan F.
  • Inorganic Chemistry, Vol. 52, Issue 21
  • DOI: 10.1021/ic401707u

Making C–H bonds with CO 2 : production of formate by molecular electrocatalysts
journal, January 2016

  • Taheri, Atefeh; Berben, Louise A.
  • Chemical Communications, Vol. 52, Issue 9
  • DOI: 10.1039/C5CC09041E

An Iron Electrocatalyst for Selective Reduction of CO 2 to Formate in Water: Including Thermochemical Insights
journal, November 2015


Rational Design of Efficient Palladium Catalysts for Electroreduction of Carbon Dioxide to Formate
journal, November 2016


Pd-Catalyzed Electrohydrogenation of Carbon Dioxide to Formate: High Mass Activity at Low Overpotential and Identification of the Deactivation Pathway
journal, April 2015

  • Min, Xiaoquan; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 137, Issue 14
  • DOI: 10.1021/ja511890h

Light-Driven Highly Selective Conversion of CO 2 to Formate by Electrosynthesized Enzyme/Cofactor Thin Film Electrode
journal, April 2016

  • Lee, Soo Youn; Lim, Sung Yul; Seo, Daye
  • Advanced Energy Materials, Vol. 6, Issue 11
  • DOI: 10.1002/aenm.201502207

Selective reduction of CO 2 to formate through bicarbonate reduction on metal electrodes: new insights gained from SG/TC mode of SECM
journal, January 2014

  • Sreekanth, Narayanaru; Phani, Kanala Lakshminarasimha
  • Chem. Commun., Vol. 50, Issue 76
  • DOI: 10.1039/C4CC03099K

Rapid Selective Electrocatalytic Reduction of Carbon Dioxide to Formate by an Iridium Pincer Catalyst Immobilized on Carbon Nanotube Electrodes
journal, June 2014

  • Kang, Peng; Zhang, Sheng; Meyer, Thomas J.
  • Angewandte Chemie International Edition, Vol. 53, Issue 33
  • DOI: 10.1002/anie.201310722

Nanostructured Tin Catalysts for Selective Electrochemical Reduction of Carbon Dioxide to Formate
journal, January 2014

  • Zhang, Sheng; Kang, Peng; Meyer, Thomas J.
  • Journal of the American Chemical Society, Vol. 136, Issue 5
  • DOI: 10.1021/ja4113885

Selective electrocatalytic reduction of carbon dioxide to formate by a water-soluble iridium pincer catalyst
journal, January 2013

  • Kang, Peng; Meyer, Thomas J.; Brookhart, Maurice
  • Chemical Science, Vol. 4, Issue 9
  • DOI: 10.1039/c3sc51339d

Electrochemical Conversion of Carbon Dioxide to Formate in Alkaline Polymer Electrolyte Membrane Cells
journal, January 2011

  • Narayanan, S. R.; Haines, B.; Soler, J.
  • Journal of The Electrochemical Society, Vol. 158, Issue 2, p. A167-A173
  • DOI: 10.1149/1.3526312

Selective Electrocatalytic Reduction of CO 2 to Formate by Water-Stable Iridium Dihydride Pincer Complexes
journal, March 2012

  • Kang, Peng; Cheng, Chen; Chen, Zuofeng
  • Journal of the American Chemical Society, Vol. 134, Issue 12
  • DOI: 10.1021/ja300543s

Aluminium–ligand cooperation promotes selective dehydrogenation of formic acid to H 2 and CO 2
journal, January 2014


Iron-Catalyzed Hydrogen Production from Formic Acid
journal, July 2010

  • Boddien, Albert; Loges, Björn; Gärtner, Felix
  • Journal of the American Chemical Society, Vol. 132, Issue 26
  • DOI: 10.1021/ja100925n

Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst
journal, September 2011


A prolific catalyst for dehydrogenation of neat formic acid
journal, April 2016

  • Celaje, Jeff Joseph A.; Lu, Zhiyao; Kedzie, Elyse A.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11308

An active, stable and recyclable Ru( ii ) tetraphosphine-based catalytic system for hydrogen production by selective formic acid dehydrogenation
journal, January 2016

  • Mellone, Irene; Bertini, Federica; Peruzzini, Maurizio
  • Catalysis Science & Technology, Vol. 6, Issue 17
  • DOI: 10.1039/C6CY01219A

Efficient Hydrogen Liberation from Formic Acid Catalyzed by a Well-Defined Iron Pincer Complex under Mild Conditions
journal, May 2013

  • Zell, Thomas; Butschke, Burkhard; Ben-David, Yehoshoa
  • Chemistry - A European Journal, Vol. 19, Issue 25
  • DOI: 10.1002/chem.201301383

Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst
journal, July 2014

  • Bielinski, Elizabeth A.; Lagaditis, Paraskevi O.; Zhang, Yuanyuan
  • Journal of the American Chemical Society, Vol. 136, Issue 29
  • DOI: 10.1021/ja505241x

Direct formate fuel cells: A review
journal, July 2016


Electrochemical surface modification on CuPdAu/C with extraordinary behavior toward formic acid/formate oxidation
journal, August 2016


Formate oxidation via β-deprotonation in [Ni(PR2NR′2)2(CH3CN)]2+ complexes
journal, January 2012

  • Seu, Candace S.; Appel, Aaron M.; Doud, Michael D.
  • Energy & Environmental Science, Vol. 5, Issue 4
  • DOI: 10.1039/c2ee03341k

Electrocatalytic Oxidation of Formate by [Ni(P R 2 N R′ 2 ) 2 (CH 3 CN)] 2+ Complexes
journal, August 2011

  • Galan, Brandon R.; Schöffel, Julia; Linehan, John C.
  • Journal of the American Chemical Society, Vol. 133, Issue 32
  • DOI: 10.1021/ja204489e

A Sodium-Ion-Conducting Direct Formate Fuel Cell: Generating Electricity and Producing Base
journal, March 2017

  • Li, Yinshi; Feng, Ying; Sun, Xianda
  • Angewandte Chemie International Edition, Vol. 56, Issue 21
  • DOI: 10.1002/anie.201701816

Solvation Effects on Transition Metal Hydricity
journal, November 2015

  • Tsay, Charlene; Livesay, Brooke N.; Ruelas, Samantha
  • Journal of the American Chemical Society, Vol. 137, Issue 44
  • DOI: 10.1021/jacs.5b07777

Predicting the reactivity of hydride donors in water: thermodynamic constants for hydrogen
journal, January 2015

  • Connelly, Samantha J.; Wiedner, Eric S.; Appel, Aaron M.
  • Dalton Transactions, Vol. 44, Issue 13
  • DOI: 10.1039/C4DT03841J

Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media
journal, June 2014

  • Moret, Séverine; Dyson, Paul J.; Laurenczy, Gábor
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5017

Hydricity of transition-metal hydrides and its role in CO2 reduction
journal, January 2000


Thermodynamic Hydricity of Transition Metal Hydrides
journal, June 2016


Incorporation of Pendant Bases into Rh(diphosphine) 2 Complexes: Synthesis, Thermodynamic Studies, And Catalytic CO 2 Hydrogenation Activity of [Rh(P 2 N 2 ) 2 ] + Complexes
journal, June 2015

  • Lilio, Alyssia M.; Reineke, Mark H.; Moore, Curtis E.
  • Journal of the American Chemical Society, Vol. 137, Issue 25
  • DOI: 10.1021/jacs.5b04291

Thermodynamics of the Metal–Hydrogen Bonds in (η 5 -C 5 H 5 )M(CO) 2 H (M = Fe, Ru, Os)
journal, June 2011

  • Estes, Deven P.; Vannucci, Aaron K.; Hall, Ariel R.
  • Organometallics, Vol. 30, Issue 12
  • DOI: 10.1021/om2001519

Development of Molecular Electrocatalysts for CO2 Reduction and H2 Production/Oxidation
journal, December 2009

  • Rakowski Dubois, M.; Dubois, Daniel L.
  • Accounts of Chemical Research, Vol. 42, Issue 12, p. 1974-1982
  • DOI: 10.1021/ar900110c

Rapid Transfer of Hydride Ion from a Ruthenium Complex to C 1 Species in Water
journal, August 2007

  • Creutz, Carol; Chou, Mei H.
  • Journal of the American Chemical Society, Vol. 129, Issue 33
  • DOI: 10.1021/ja074158w

Hydricities of d 6 Metal Hydride Complexes in Water
journal, March 2009

  • Creutz, Carol; Chou, Mei H.
  • Journal of the American Chemical Society, Vol. 131, Issue 8
  • DOI: 10.1021/ja809724s

Thermodynamic and Kinetic Hydricity of Ruthenium(II) Hydride Complexes
journal, September 2012

  • Matsubara, Yasuo; Fujita, Etsuko; Doherty, Mark D.
  • Journal of the American Chemical Society, Vol. 134, Issue 38
  • DOI: 10.1021/ja302937q

Solvent-Dependent Thermochemistry of an Iridium/Ruthenium H 2 Evolution Catalyst
journal, November 2016


Aqueous Hydricity of Late Metal Catalysts as a Continuum Tuned by Ligands and the Medium
journal, February 2016

  • Pitman, Catherine L.; Brereton, Kelsey R.; Miller, Alexander J. M.
  • Journal of the American Chemical Society, Vol. 138, Issue 7
  • DOI: 10.1021/jacs.5b12363

Electrocatalytic Hydrogen Evolution under Acidic Aqueous Conditions and Mechanistic Studies of a Highly Stable Molecular Catalyst
journal, July 2016

  • Tsay, Charlene; Yang, Jenny Y.
  • Journal of the American Chemical Society, Vol. 138, Issue 43
  • DOI: 10.1021/jacs.6b05851

Neutral Transition Metal Hydrides as Acids in Hydrogen Bonding and Proton Transfer: Media Polarity and Specific Solvation Effects
journal, August 2010

  • Levina, Vladislava A.; Filippov, Oleg A.; Gutsul, Evgenii I.
  • Journal of the American Chemical Society, Vol. 132, Issue 32
  • DOI: 10.1021/ja103862r

Solvent influence on the thermodynamics for hydride transfer from bis(diphosphine) complexes of nickel
journal, January 2016

  • Connelly Robinson, Samantha J.; Zall, Christopher M.; Miller, Deanna L.
  • Dalton Transactions, Vol. 45, Issue 24
  • DOI: 10.1039/C6DT00309E

Hydrogenation of CO 2 in Water Using a Bis(diphosphine) Ni–H Complex
journal, March 2017

  • Burgess, Samantha A.; Kendall, Alexander J.; Tyler, David R.
  • ACS Catalysis, Vol. 7, Issue 4
  • DOI: 10.1021/acscatal.7b00350

Experimental and theoretical studies of the gas-phase protonation of vinyl ethers, vinyl sulfides, and vinyl selenides
journal, July 1989

  • Osapay, K.; Delhalle, J.; Nsunda, K. M.
  • Journal of the American Chemical Society, Vol. 111, Issue 14
  • DOI: 10.1021/ja00196a002

Bond energies in solution from electrode potentials and thermochemical cycles. A simplified and general approach
journal, May 1993

  • Wayner, Danial D. M.; Parker, Vernon D.
  • Accounts of Chemical Research, Vol. 26, Issue 5
  • DOI: 10.1021/ar00029a010

Extension of the Self-Consistent Spectrophotometric Basicity Scale in Acetonitrile to a Full Span of 28 p K a Units:  Unification of Different Basicity Scales
journal, February 2005

  • Kaljurand, Ivari; Kütt, Agnes; Sooväli, Lilli
  • The Journal of Organic Chemistry, Vol. 70, Issue 3
  • DOI: 10.1021/jo048252w

Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes
journal, August 2011

  • Armstrong, F. A.; Hirst, J.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 34
  • DOI: 10.1073/pnas.1103697108

Reversible Electrocatalytic Production and Oxidation of Hydrogen at Low Overpotentials by a Functional Hydrogenase Mimic
journal, February 2012

  • Smith, Stuart E.; Yang, Jenny Y.; DuBois, Daniel L.
  • Angewandte Chemie International Edition, Vol. 51, Issue 13, p. 3152-3155
  • DOI: 10.1002/anie.201108461