skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spinel LiNi 0.5 Mn 1.5 O 4 Cathode for High-Energy Aqueous Lithium-Ion Batteries


Not provided.

 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. Department of Chemical and Biomolecular Engineering, University of Maryland, College Park MD 20742 USA
Publication Date:
Research Org.:
Univ. of Maryland, College Park, MD (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
DOE Contract Number:  
Resource Type:
Journal Article
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 7; Journal Issue: 8; Journal ID: ISSN 1614-6832
Country of Publication:
United States
Chemistry; Energy & Fuels; Materials Science; Physics

Citation Formats

Wang, Fei, Suo, Liumin, Liang, Yujia, Yang, Chongyin, Han, Fudong, Gao, Tao, Sun, Wei, and Wang, Chunsheng. Spinel LiNi 0.5 Mn 1.5 O 4 Cathode for High-Energy Aqueous Lithium-Ion Batteries. United States: N. p., 2016. Web. doi:10.1002/aenm.201600922.
Wang, Fei, Suo, Liumin, Liang, Yujia, Yang, Chongyin, Han, Fudong, Gao, Tao, Sun, Wei, & Wang, Chunsheng. Spinel LiNi 0.5 Mn 1.5 O 4 Cathode for High-Energy Aqueous Lithium-Ion Batteries. United States. doi:10.1002/aenm.201600922.
Wang, Fei, Suo, Liumin, Liang, Yujia, Yang, Chongyin, Han, Fudong, Gao, Tao, Sun, Wei, and Wang, Chunsheng. Wed . "Spinel LiNi 0.5 Mn 1.5 O 4 Cathode for High-Energy Aqueous Lithium-Ion Batteries". United States. doi:10.1002/aenm.201600922.
title = {Spinel LiNi 0.5 Mn 1.5 O 4 Cathode for High-Energy Aqueous Lithium-Ion Batteries},
author = {Wang, Fei and Suo, Liumin and Liang, Yujia and Yang, Chongyin and Han, Fudong and Gao, Tao and Sun, Wei and Wang, Chunsheng},
abstractNote = {Not provided.},
doi = {10.1002/aenm.201600922},
journal = {Advanced Energy Materials},
issn = {1614-6832},
number = 8,
volume = 7,
place = {United States},
year = {2016},
month = {12}

Works referenced in this record:

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014

Aqueous Rechargeable Li and Na Ion Batteries
journal, September 2014

  • Kim, Haegyeom; Hong, Jihyun; Park, Kyu-Young
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500232y

Rechargeable Lithium Batteries with Aqueous Electrolytes
journal, May 1994

Aqueous rechargeable lithium batteries as an energy storage system of superfast charging
journal, January 2013

  • Tang, Wei; Zhu, Yusong; Hou, Yuyang
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee24249h

Recent Progress in Aqueous Lithium-Ion Batteries
journal, June 2012

  • Wang, Yonggang; Yi, Jin; Xia, Yongyao
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201200065

A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage
journal, January 2012

  • Pasta, Mauro; Wessells, Colin D.; Huggins, Robert A.
  • Nature Communications, Vol. 3, Issue 1, Article No. 1149
  • DOI: 10.1038/ncomms2139

Rechargeable batteries with aqueous electrolytes
journal, May 2000

Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte
journal, August 2010

  • Luo, Jia-Yan; Cui, Wang-Jun; He, Ping
  • Nature Chemistry, Vol. 2, Issue 9
  • DOI: 10.1038/nchem.763

"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries
journal, November 2015

A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery
journal, September 2011

  • Jung, Hun-Gi; Jang, Min Woo; Hassoun, Jusef
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1527

Comparative study of different crystallographic structure of LiNi0.5Mn1.5O4−δ cathodes with wide operation voltage (2.0–5.0V)
journal, September 2007

Hydrate-melt electrolytes for high-energy-density aqueous batteries
journal, August 2016

A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries
journal, January 2014

  • Manthiram, Arumugam; Chemelewski, Katharine; Lee, Eun-Sung
  • Energy & Environmental Science, Vol. 7, Issue 4
  • DOI: 10.1039/c3ee42981d

High-Performance LiNi 0.5 Mn 1.5 O 4 Spinel Controlled by Mn 3+ Concentration and Site Disorder
journal, March 2012

Comparative Study of LiNi 0.5 Mn 1.5 O 4 - δ and LiNi 0.5 Mn 1.5 O 4 Cathodes Having Two Crystallographic Structures:  Fdm and P 4 3 32
journal, March 2004

  • Kim, J. -H.; Myung, S. -T.; Yoon, C. S.
  • Chemistry of Materials, Vol. 16, Issue 5
  • DOI: 10.1021/cm035050s

Role of Oxygen Vacancies on the Performance of Li[Ni 0.5– x Mn 1.5+ x ]O 4 ( x = 0, 0.05, and 0.08) Spinel Cathodes for Lithium-Ion Batteries
journal, July 2012

  • Song, Jie; Shin, Dong Wook; Lu, Yuhao
  • Chemistry of Materials, Vol. 24, Issue 15
  • DOI: 10.1021/cm301825h

Electrochemical Intercalation of Lithium Ion within Graphite from Propylene Carbonate Solutions
journal, January 2003

  • Jeong, Soon-Ki; Inaba, Minoru; Iriyama, Yasutoshi
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 1
  • DOI: 10.1149/1.1526781

Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries
journal, March 2014

  • Yamada, Yuki; Furukawa, Keizo; Sodeyama, Keitaro
  • Journal of the American Chemical Society, Vol. 136, Issue 13, p. 5039-5046
  • DOI: 10.1021/ja412807w

LiTFSI Stability in Water and Its Possible Use in Aqueous Lithium-Ion Batteries: pH Dependency, Electrochemical Window and Temperature Stability
journal, January 2013

  • Lux, S. F.; Terborg, L.; Hachmöller, O.
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.039310jes

Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms
journal, January 2014

  • McOwen, Dennis W.; Seo, Daniel M.; Borodin, Oleg
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42351D

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Rechargeable Aqueous Lithium-Ion Battery of TiO2∕LiMn2O4 with a High Voltage
journal, January 2011

  • Liu, S.; Ye, S. H.; Li, C. Z.
  • Journal of The Electrochemical Society, Vol. 158, Issue 12
  • DOI: 10.1149/2.094112jes

Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries
journal, December 2011

  • Wessells, Colin D.; Peddada, Sandeep V.; Huggins, Robert A.
  • Nano Letters, Vol. 11, Issue 12, p. 5421-5425
  • DOI: 10.1021/nl203193q

Lithium Intercalation from Aqueous Solutions
journal, January 1994

  • Li, W.
  • Journal of The Electrochemical Society, Vol. 141, Issue 9
  • DOI: 10.1149/1.2055118

Aqueous rechargeable alkali-ion batteries with polyimide anode
journal, March 2014

New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes
journal, June 2013

  • Chen, Liang; Gu, Qingwen; Zhou, Xufeng
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01946

Electrochemical properties of TiP2O7 and LiTi2(PO4)3 as anode material for lithium ion battery with aqueous solution electrolyte
journal, February 2007

Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Intercalated Compounds
journal, January 2006

  • Wang, Yong-gang; Xia, Yong-yao
  • Journal of The Electrochemical Society, Vol. 153, Issue 2
  • DOI: 10.1149/1.2140678

Batteries fifty years of materials development
journal, October 2000