skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nuclear charge radii: density functional theory meets Bayesian neural networks

Abstract

Not provided.

Authors:
; ;
Publication Date:
Research Org.:
Florida State Univ., Tallahassee, FL (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1532922
DOE Contract Number:  
FG02-92ER40750; FG05-92ER40750
Resource Type:
Journal Article
Journal Name:
Journal of Physics. G, Nuclear and Particle Physics
Additional Journal Information:
Journal Volume: 43; Journal Issue: 11; Journal ID: ISSN 0954-3899
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
Physics

Citation Formats

Utama, R., Chen, Wei-Chia, and Piekarewicz, J. Nuclear charge radii: density functional theory meets Bayesian neural networks. United States: N. p., 2016. Web. doi:10.1088/0954-3899/43/11/114002.
Utama, R., Chen, Wei-Chia, & Piekarewicz, J. Nuclear charge radii: density functional theory meets Bayesian neural networks. United States. doi:10.1088/0954-3899/43/11/114002.
Utama, R., Chen, Wei-Chia, and Piekarewicz, J. Mon . "Nuclear charge radii: density functional theory meets Bayesian neural networks". United States. doi:10.1088/0954-3899/43/11/114002.
@article{osti_1532922,
title = {Nuclear charge radii: density functional theory meets Bayesian neural networks},
author = {Utama, R. and Chen, Wei-Chia and Piekarewicz, J.},
abstractNote = {Not provided.},
doi = {10.1088/0954-3899/43/11/114002},
journal = {Journal of Physics. G, Nuclear and Particle Physics},
issn = {0954-3899},
number = 11,
volume = 43,
place = {United States},
year = {2016},
month = {10}
}