skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo[subscript 3]P) for Electrochemical Hydrogen Evolution

Authors:
; ; ; ; ; ; ; ; ; ;  [1]
  1. LBNL
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
National Science Foundation (NSF)
OSTI Identifier:
1531000
Resource Type:
Journal Article
Journal Name:
Adv. Energy Mat.
Additional Journal Information:
Journal Volume: 9; Journal Issue: (22) ; 06, 2019
Country of Publication:
United States
Language:
ENGLISH

Citation Formats

Kondori, Alireza, Esmaeilirad, Mohammadreza, Baskin, Artem, Song, Boao, Wei, Jialiang, Chen, Wei, Segre, Carlo U., Shahbazian,, #8208, Yassar, Reza, Prendergast, David, Asadi, Mohammad, IIT), and UIC). Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo[subscript 3]P) for Electrochemical Hydrogen Evolution. United States: N. p., 2019. Web. doi:10.1002/aenm.201900516.
Kondori, Alireza, Esmaeilirad, Mohammadreza, Baskin, Artem, Song, Boao, Wei, Jialiang, Chen, Wei, Segre, Carlo U., Shahbazian,, #8208, Yassar, Reza, Prendergast, David, Asadi, Mohammad, IIT), & UIC). Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo[subscript 3]P) for Electrochemical Hydrogen Evolution. United States. doi:10.1002/aenm.201900516.
Kondori, Alireza, Esmaeilirad, Mohammadreza, Baskin, Artem, Song, Boao, Wei, Jialiang, Chen, Wei, Segre, Carlo U., Shahbazian,, #8208, Yassar, Reza, Prendergast, David, Asadi, Mohammad, IIT), and UIC). Fri . "Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo[subscript 3]P) for Electrochemical Hydrogen Evolution". United States. doi:10.1002/aenm.201900516.
@article{osti_1531000,
title = {Identifying Catalytic Active Sites of Trimolybdenum Phosphide (Mo[subscript 3]P) for Electrochemical Hydrogen Evolution},
author = {Kondori, Alireza and Esmaeilirad, Mohammadreza and Baskin, Artem and Song, Boao and Wei, Jialiang and Chen, Wei and Segre, Carlo U. and Shahbazian, and #8208 and Yassar, Reza and Prendergast, David and Asadi, Mohammad and IIT) and UIC)},
abstractNote = {},
doi = {10.1002/aenm.201900516},
journal = {Adv. Energy Mat.},
number = (22) ; 06, 2019,
volume = 9,
place = {United States},
year = {2019},
month = {6}
}

Works referenced in this record:

Hydrogenase sophistication
journal, January 1999

  • Cammack, Richard
  • Nature, Vol. 397, Issue 6716
  • DOI: 10.1038/16601

The Crystal Structure of [Fe]-Hydrogenase Reveals the Geometry of the Active Site
journal, July 2008


The active site and catalytic mechanism of NiFe hydrogenases
journal, January 2003

  • Volbeda, Anne; Fontecilla-Camps, Juan C.
  • Dalton Trans., Issue 21
  • DOI: 10.1039/B304316A

Silver Supported on Titania as an Active Catalyst for Electrochemical Carbon Dioxide Reduction
journal, January 2014


Materials for solar fuels and chemicals
journal, December 2016

  • Montoya, Joseph H.; Seitz, Linsey C.; Chakthranont, Pongkarn
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4778

Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


Aqueous CO 2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles
journal, November 2012

  • Chen, Yihong; Li, Christina W.; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 134, Issue 49
  • DOI: 10.1021/ja309317u

Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters
journal, January 2014

  • Kibsgaard, Jakob; Jaramillo, Thomas F.; Besenbacher, Flemming
  • Nature Chemistry, Vol. 6, Issue 3
  • DOI: 10.1038/nchem.1853

Towards the computational design of solid catalysts
journal, April 2009

  • Nørskov, J.; Bligaard, T.; Rossmeisl, J.
  • Nature Chemistry, Vol. 1, Issue 1, p. 37-46
  • DOI: 10.1038/nchem.121

Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483

Recent Advances in Electrocatalytic Reduction of Carbon Dioxide Using Metal-Free Catalysts
journal, January 2015

  • Mao, Xianwen; Hatton, T. Alan
  • Industrial & Engineering Chemistry Research, Vol. 54, Issue 16
  • DOI: 10.1021/ie504336h

Monolayer MoS 2 Films Supported by 3D Nanoporous Metals for High-Efficiency Electrocatalytic Hydrogen Production
journal, October 2014


Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis
journal, October 2012

  • Kibsgaard, Jakob; Chen, Zhebo; Reinecke, Benjamin N.
  • Nature Materials, Vol. 11, Issue 11, p. 963-969
  • DOI: 10.1038/nmat3439

Layer-Dependent Electrocatalysis of MoS 2 for Hydrogen Evolution
journal, January 2014

  • Yu, Yifei; Huang, Sheng-Yang; Li, Yanpeng
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl403620g

Mapping Catalytically Relevant Edge Electronic States of MoS 2
journal, February 2018


Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution
journal, July 2017


Closely Interconnected Network of Molybdenum Phosphide Nanoparticles: A Highly Efficient Electrocatalyst for Generating Hydrogen from Water
journal, June 2014

  • Xing, Zhicai; Liu, Qian; Asiri, Abdullah M.
  • Advanced Materials, Vol. 26, Issue 32
  • DOI: 10.1002/adma.201401692

Porous Molybdenum Phosphide Nano-Octahedrons Derived from Confined Phosphorization in UIO-66 for Efficient Hydrogen Evolution
journal, July 2016

  • Yang, Jian; Zhang, Fengjun; Wang, Xin
  • Angewandte Chemie International Edition, Vol. 55, Issue 41
  • DOI: 10.1002/anie.201604315

Ultrafast lithium energy storage enabled by interfacial construction of interlayer-expanded MoS 2 /N-doped carbon nanowires
journal, January 2018

  • Sun, Huanhuan; Wang, Jian-Gan; Zhang, Yu
  • Journal of Materials Chemistry A, Vol. 6, Issue 27
  • DOI: 10.1039/C8TA04852E

A Monodisperse Rh 2 P-Based Electrocatalyst for Highly Efficient and pH-Universal Hydrogen Evolution Reaction
journal, March 2018

  • Yang, Fulin; Zhao, Yuanmeng; Du, Yeshuang
  • Advanced Energy Materials, Vol. 8, Issue 18
  • DOI: 10.1002/aenm.201703489

Carbon-Tailored Semimetal MoP as an Efficient Hydrogen Evolution Electrocatalyst in Both Alkaline and Acid Media
journal, June 2018


Hierarchical molybdenum carbide/N-doped carbon as efficient electrocatalyst for hydrogen evolution reaction in alkaline solution
journal, September 2018


Ultrastable In-Plane 1T-2H MoS 2 Heterostructures for Enhanced Hydrogen Evolution Reaction
journal, July 2018


Molybdenum Phosphide/Carbon Nanotube Hybrids as pH-Universal Electrocatalysts for Hydrogen Evolution Reaction
journal, February 2018

  • Zhang, Xing; Yu, Xiaolu; Zhang, Linjie
  • Advanced Functional Materials, Vol. 28, Issue 16
  • DOI: 10.1002/adfm.201706523

Mapping the electrocatalytic activity of MoS 2 across its amorphous to crystalline transition
journal, January 2017

  • Choi, Yun-Hyuk; Cho, Junsang; Lunsford, Allen M.
  • Journal of Materials Chemistry A, Vol. 5, Issue 10
  • DOI: 10.1039/C6TA10316B

Electrochemistry and photochemistry of MoS2 layer crystals. I
journal, August 1977

  • Tributsch, H.; Bennett, J. C.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 81, Issue 1
  • DOI: 10.1016/S0022-0728(77)80363-X

Hydrogen on molybdenum disulfide: theory of its heterolytic and homolytic chemisorption
journal, February 1988

  • Anderson, Alfred B.; Al-Saigh, Zeki Y.; Hall, W. Keith
  • The Journal of Physical Chemistry, Vol. 92, Issue 3
  • DOI: 10.1021/j100314a042

Molecular aspects of the H2 activation on MoS2 based catalysts — the role of dynamic surface arrangements
journal, December 2000

  • Byskov, Line S.; Bollinger, Mikkel; Nørskov, Jens K.
  • Journal of Molecular Catalysis A: Chemical, Vol. 163, Issue 1-2
  • DOI: 10.1016/S1381-1169(00)00404-0

Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction
journal, January 2016

  • Shi, Yanmei; Zhang, Bin
  • Chemical Society Reviews, Vol. 45, Issue 6, p. 1529-1541
  • DOI: 10.1039/C5CS00434A

Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution
journal, August 2016


Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials
journal, February 2011


High-Quality Black Phosphorus Atomic Layers by Liquid-Phase Exfoliation
journal, February 2015

  • Yasaei, Poya; Kumar, Bijandra; Foroozan, Tara
  • Advanced Materials, Vol. 27, Issue 11
  • DOI: 10.1002/adma.201405150

Advanced spatially resolved EELS in the STEM
journal, June 1999


Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity
journal, December 1993


Cathode Based on Molybdenum Disulfide Nanoflakes for Lithium–Oxygen Batteries
journal, January 2016


Exploiting carbon flatland
journal, December 2011


Molybdenum Sulfide/N-Doped CNT Forest Hybrid Catalysts for High-Performance Hydrogen Evolution Reaction
journal, February 2014

  • Li, Dong Jun; Maiti, Uday Narayan; Lim, Joonwon
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404108a

Edge-Oriented MoS 2 Nanoporous Films as Flexible Electrodes for Hydrogen Evolution Reactions and Supercapacitor Devices
journal, October 2014


Conducting MoS 2 Nanosheets as Catalysts for Hydrogen Evolution Reaction
journal, November 2013

  • Voiry, Damien; Salehi, Maryam; Silva, Rafael
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl403661s

CoSe 2 necklace-like nanowires supported by carbon fiber paper: a 3D integrated electrode for the hydrogen evolution reaction
journal, January 2015

  • Wang, Ke; Xi, Dan; Zhou, Chongjian
  • Journal of Materials Chemistry A, Vol. 3, Issue 18
  • DOI: 10.1039/C5TA01143D

Highly Efficient Hydrogen Evolution Reaction Using Crystalline Layered Three-Dimensional Molybdenum Disulfides Grown on Graphene Film
journal, January 2016


Nanostructured transition metal dichalcogenide electrocatalysts for CO 2 reduction in ionic liquid
journal, July 2016


A grid-based Bader analysis algorithm without lattice bias
journal, January 2009


Trends in the Exchange Current for Hydrogen Evolution
journal, January 2005

  • Nørskov, J. K.; Bligaard, T.; Logadottir, A.
  • Journal of The Electrochemical Society, Vol. 152, Issue 3
  • DOI: 10.1149/1.1856988

Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations
journal, October 2010

  • Skúlason, Egill; Tripkovic, Vladimir; Björketun, Mårten E.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 42
  • DOI: 10.1021/jp1048887

Tailoring the Edge Structure of Molybdenum Disulfide toward Electrocatalytic Reduction of Carbon Dioxide
journal, December 2016


Molybdenum Phosphide as ano-Propylaniline Hydrodenitrogenation Catalyst: A First Principles Study
journal, December 2004

  • Milman, Victor; Winkler, Bj�rn; Gomperts, Roberto
  • Chemistry - A European Journal, Vol. 10, Issue 24
  • DOI: 10.1002/chem.200400510

Density-functional method for very large systems with LCAO basis sets
journal, January 1997


Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts
journal, January 2013

  • Chen, Wei-Fu; Muckerman, James T.; Fujita, Etsuko
  • Chemical Communications, Vol. 49, Issue 79
  • DOI: 10.1039/c3cc44076a

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Projector augmented-wave method
journal, December 1994


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865