skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Phenotypic redshifts with self-organizing maps: A novel method to characterize redshift distributions of source galaxies for weak lensing

Journal Article · · Monthly Notices of the Royal Astronomical Society
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [4];  [5];  [6];  [6];  [7];  [8];  [7];  [9];  [10];  [11];  [12];  [13];  [3];  [14];  [15];  [16];  [17] more »;  [18];  [19];  [15];  [8];  [20];  [21];  [22];  [5];  [23];  [6];  [24];  [25];  [26];  [15];  [19];  [27];  [28];  [29];  [15];  [5];  [27];  [30];  [5];  [21];  [24];  [15];  [31];  [32];  [33];  [34];  [35];  [15];  [36];  [15];  [24];  [6];  [37];  [38];  [21];  [24];  [38];  [8];  [25];  [15];  [5];  [25];  [39];  [40];  [41];  [42];  [43];  [44];  [16];  [45] « less
  1. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA, Kavli Institute for Particle Astrophysics and Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA, École Polytechnique Fédérale de Lausanne, Route Cantonale, CH-1015 Lausanne, Switzerland, Institute of Science, Technology, and Policy, ETH Zurich, Universitätstrasse 41, CH-8092 Zurich, Switzerland
  2. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA, Kavli Institute for Particle Astrophysics and Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA, Descartes Labs, Inc., 100 N Guadelupe St, Santa Fe, NM 87501, USA
  3. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA, Kavli Institute for Particle Astrophysics and Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA, Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
  4. Kavli Institute for Particle Astrophysics and Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA, Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
  5. Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain, Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  6. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  7. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
  8. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA, Kavli Institute for Particle Astrophysics and Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA
  9. Kavli Institute for Particle Astrophysics and Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA
  10. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA
  11. Infrared Processing and Analysis Center, Pasadena, CA 91125, USA, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  12. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain, Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  13. Department of Physics, Duke University Durham, NC 27708, USA
  14. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
  15. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
  16. Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
  17. LSST, 933 North Cherry Avenue, Tucson, AZ 85721, USA, Physics Department, 2320 Chamberlin Hall, University of Wisconsin-Madison, 1150 University Avenue Madison, WI 53706, USA
  18. Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
  19. Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
  20. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), E-28040 Madrid, Spain, Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro RJ - 20921-400, Brazil
  21. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W, Green Street, Urbana, IL 61801, USA, National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  22. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  23. Physics Department, 2320 Chamberlin Hall, University of Wisconsin-Madison, 1150 University Avenue Madison, WI 53706, USA
  24. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro RJ - 20921-400, Brazil, Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro RJ - 20921-400, Brazil
  25. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), E-28040 Madrid, Spain
  26. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
  27. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA, Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  28. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA, Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA
  29. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA, Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  30. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-8049 Madrid, Spain
  31. Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
  32. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  33. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA, Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  34. Center for Astrophysics, Harvard and Smithsonian, 60 Garden Street, MS 42, Cambridge, MA 02138, USA
  35. Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia
  36. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro RJ - 20921-400, Brazil, Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil
  37. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
  38. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
  39. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  40. Physics Department, Brandeis University, 415 South Street, Waltham, MA 02453, USA
  41. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro RJ - 20921-400, Brazil, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP, Brazil
  42. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  43. National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  44. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  45. Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA

ABSTRACT Wide-field imaging surveys such as the Dark Energy Survey (DES) rely on coarse measurements of spectral energy distributions in a few filters to estimate the redshift distribution of source galaxies. In this regime, sample variance, shot noise, and selection effects limit the attainable accuracy of redshift calibration and thus of cosmological constraints. We present a new method to combine wide-field, few-filter measurements with catalogues from deep fields with additional filters and sufficiently low photometric noise to break degeneracies in photometric redshifts. The multiband deep field is used as an intermediary between wide-field observations and accurate redshifts, greatly reducing sample variance, shot noise, and selection effects. Our implementation of the method uses self-organizing maps to group galaxies into phenotypes based on their observed fluxes, and is tested using a mock DES catalogue created from N-body simulations. It yields a typical uncertainty on the mean redshift in each of five tomographic bins for an idealized simulation of the DES Year 3 weak-lensing tomographic analysis of σΔz = 0.007, which is a 60 per cent improvement compared to the Year 1 analysis. Although the implementation of the method is tailored to DES, its formalism can be applied to other large photometric surveys with a similar observing strategy.

Research Organization:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC), High Energy Physics (HEP); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
Contributing Organization:
DES; DES Collaboration
Grant/Contract Number:
AC02-76SF00515; AC02-07CH11359; AC05-00OR22725
OSTI ID:
1558844
Alternate ID(s):
OSTI ID: 1527430; OSTI ID: 1559590; OSTI ID: 1569038
Report Number(s):
arXiv:1901.05005; FERMILAB-PUB-19-011-AE
Journal Information:
Monthly Notices of the Royal Astronomical Society, Journal Name: Monthly Notices of the Royal Astronomical Society Vol. 489 Journal Issue: 1; ISSN 0035-8711
Publisher:
Royal Astronomical SocietyCopyright Statement
Country of Publication:
United Kingdom
Language:
English
Citation Metrics:
Cited by: 48 works
Citation information provided by
Web of Science

References (67)

The automated classification of astronomical light curves using Kohonen self-organizing maps journal September 2004
Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross‐Correlations journal September 2008
Atmospheric Dispersion Effects in Weak Lensing Measurements
  • Alejandro Plazas, Andrés; Bernstein, Gary
  • Publications of the Astronomical Society of the Pacific, Vol. 124, Issue 920 https://doi.org/10.1086/668294
journal October 2012
The Alhambra Survey: a Large area Multimedium-Band Optical and Near-Infrared Photometric Survey journal August 2008
UltraVISTA: a new ultra-deep near-infrared survey in COSMOS journal August 2012
No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey journal January 2016
Precise photometric redshifts with a narrow-band filter set: the PAU survey at the William Herschel Telescope journal June 2014
Cosmological Constraints from Multiple Probes in the Dark Energy Survey journal May 2019
Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey journal September 2006
Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear journal August 2018
Faint Galaxies in Deep Advanced Camera for Surveys Observations journal January 2004
Self-organized formation of topologically correct feature maps journal January 1982
Practical Weak-lensing Shear Measurement with Metacalibration journal May 2017
The evolution of disk galaxies and the origin of S0 galaxies journal April 1980
Deep Astrometric Standards journal October 2007
The dark Energy Camera journal October 2015
Redshift inference from the combination of galaxy colours and clustering in a hierarchical Bayesian model journal November 2018
The cosmological simulation code gadget-2 journal December 2005
Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology journal April 2018
Dark Energy Survey Year 1 results: weak lensing shape catalogues journal August 2018
The Dark Energy Camera (DECam) conference August 2008
The VISTA Deep Extragalactic Observations (VIDEO) survey★ journal October 2012
KiDS-i-800: comparing weak gravitational lensing measurements from same-sky surveys journal April 2018
CLASH: Photometric redshifts with 16 HST bands in galaxy cluster fields journal February 2014
The Kilo-Degree Survey journal August 2012
Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration journal February 2006
DES Y1 Results: validating cosmological parameter estimation using simulated Dark Energy Surveys journal July 2018
Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North journal December 1999
Dark Energy Survey Year 1 Results: calibration of redMaGiC redshift distributions in DES and SDSS from cross-correlations journal September 2018
Cross-correlation redshift calibration without spectroscopic calibration samples in DES Science Verification Data journal March 2018
The Hyper Suprime-Cam SSP Survey: Overview and survey design journal September 2017
THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES journal June 2016
Infrared small target detection using phase spectrum of quaternion fourier transform conference November 2018
Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data journal October 2001
TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests journal May 2013
Estimating the redshift distribution of photometric galaxy samples journal October 2008
The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1 journal May 2017
Dark Energy Survey Year 1 results: cross-correlation redshifts – methods and systematics characterization journal February 2018
Recovering redshift distributions with cross-correlations: pushing the boundaries journal April 2013
Bayesian Photometric Redshift Estimation journal June 2000
Using Galaxy Two‐Point Correlation Functions to Determine the Redshift Distributions of Galaxies Binned by Photometric Redshift journal November 2006
Approximating Photo- z PDFs for Large Surveys journal June 2018
ANN z : Estimating Photometric Redshifts Using Artificial Neural Networks journal April 2004
Power Spectrum Tomography with Weak Lensing journal September 1999
Galaxy Morphology without Classification: Self‐organizing Maps
  • Naim, Avi; Ratnatunga, Kavan U.; Griffiths, Richard E.
  • The Astrophysical Journal Supplement Series, Vol. 111, Issue 2 https://doi.org/10.1086/313022
journal August 1997
SOMz: photometric redshift PDFs with self-organizing maps and random atlas journal January 2014
KiDS+2dFLenS+GAMA: testing the cosmological model with the EG statistic journal June 2018
Effects of Photometric Redshift Uncertainties on Weak‐Lensing Tomography journal January 2006
Weak Lensing for Precision Cosmology journal September 2018
Classifying Gamma‐Ray Bursts using Self‐organizing Maps journal February 2002
The Deep3 Galaxy Redshift Survey: Keck/Deimos Spectroscopy in the Goods-N Field journal March 2011
Can Self-Organizing Maps Accurately Predict Photometric Redshifts? journal March 2012
The PAU Survey: early demonstration of photometric redshift performance in the COSMOS field journal January 2019
Weak gravitational lensing journal January 2001
Cosmology with cosmic shear observations: a review journal July 2015
DNF – Galaxy photometric redshift by Directional Neighbourhood Fitting journal April 2016
KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing journal November 2016
Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies journal April 2018
A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements journal September 1999
Mapping the Galaxy Color–Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology Surveys journal October 2015
Subaru Prime Focus Camera — Suprime-Cam journal December 2002
Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing journal August 2016
Photo-z performance for precision cosmology: Photo-z performance for precision cosmology journal May 2010
The Complete Calibration of the Color–Redshift Relation (C3R2) Survey: Analysis and Data Release 2 journal May 2019
Unsupervised self-organized mapping: a versatile empirical tool for object selection, classification and redshift estimation in large surveys: Self-organization for surveys journal November 2011
Simultaneous constraints on cosmology and photometric redshift bias from weak lensing and galaxy clustering journal September 2016
Selection biases in empirical p(z) methods for weak lensing journal February 2017

Figures / Tables (16)


Similar Records

QSO photometric redshifts using machine learning and neural networks
Journal Article · Mon Feb 22 00:00:00 EST 2021 · Monthly Notices of the Royal Astronomical Society · OSTI ID:1558844

Propagating sample variance uncertainties in redshift calibration: simulations, theory, and application to the COSMOS2015 data
Journal Article · Sat Aug 22 00:00:00 EDT 2020 · Monthly Notices of the Royal Astronomical Society · OSTI ID:1558844

Dark Energy Survey Year 3 results: redshift calibration of the weak lensing source galaxies
Journal Article · Thu May 27 00:00:00 EDT 2021 · Monthly Notices of the Royal Astronomical Society · OSTI ID:1558844