skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties

Abstract

The use of machine learning methods for accelerating the design of crystalline materials usually requires manually constructed feature vectors or complex transformation of atom coordinates to input the crystal structure, which either constrains the model to certain crystal types or makes it difficult to provide chemical insights. Here, we develop a crystal graph convolutional neural networks framework to directly learn material properties from the connection of atoms in the crystal, providing a universal and interpretable representation of crystalline materials. Our method provides a highly accurate prediction of density functional theory calculated properties for eight different properties of crystals with various structure types and compositions after being trained with 10 4 data points. Further, our framework is interpretable because one can extract the contributions from local chemical environments to global properties. Using an example of perovskites, we show how this information can be utilized to discover empirical rules for materials design.

Authors:
 [1];  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1524040
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 120; Journal Issue: 14; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Xie, Tian, and Grossman, Jeffrey C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. United States: N. p., 2018. Web. doi:10.1103/PhysRevLett.120.145301.
Xie, Tian, & Grossman, Jeffrey C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. United States. doi:10.1103/PhysRevLett.120.145301.
Xie, Tian, and Grossman, Jeffrey C. Fri . "Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties". United States. doi:10.1103/PhysRevLett.120.145301. https://www.osti.gov/servlets/purl/1524040.
@article{osti_1524040,
title = {Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties},
author = {Xie, Tian and Grossman, Jeffrey C.},
abstractNote = {The use of machine learning methods for accelerating the design of crystalline materials usually requires manually constructed feature vectors or complex transformation of atom coordinates to input the crystal structure, which either constrains the model to certain crystal types or makes it difficult to provide chemical insights. Here, we develop a crystal graph convolutional neural networks framework to directly learn material properties from the connection of atoms in the crystal, providing a universal and interpretable representation of crystalline materials. Our method provides a highly accurate prediction of density functional theory calculated properties for eight different properties of crystals with various structure types and compositions after being trained with 104 data points. Further, our framework is interpretable because one can extract the contributions from local chemical environments to global properties. Using an example of perovskites, we show how this information can be utilized to discover empirical rules for materials design.},
doi = {10.1103/PhysRevLett.120.145301},
journal = {Physical Review Letters},
issn = {0031-9007},
number = 14,
volume = 120,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 110 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Deep learning
journal, May 2015

  • LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey
  • Nature, Vol. 521, Issue 7553
  • DOI: 10.1038/nature14539

Accelerated search for materials with targeted properties by adaptive design
journal, April 2016

  • Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11241

The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies
journal, December 2015


A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds
journal, October 2016

  • de Jong, Maarten; Chen, Wei; Notestine, Randy
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep34256

Voronoi–dirichlet polyhedra in crystal chemistry: theory and applications
journal, October 2004


Charting the complete elastic properties of inorganic crystalline compounds
journal, March 2015

  • de Jong, Maarten; Chen, Wei; Angsten, Thomas
  • Scientific Data, Vol. 2, Issue 1
  • DOI: 10.1038/sdata.2015.9

Quantum Monte Carlo simulations of solids
journal, January 2001


An Interpretation of Bond Lengths and a Classification of Bonds
journal, December 1951


An Explanation of Chemical Variations within Periodic Major Groups
journal, October 1952

  • Sanderson, R. T.
  • Journal of the American Chemical Society, Vol. 74, Issue 19
  • DOI: 10.1021/ja01139a020

Crystal structure representations for machine learning models of formation energies
journal, April 2015

  • Faber, Felix; Lindmaa, Alexander; von Lilienfeld, O. Anatole
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24917

Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization
journal, November 2015


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Improved Photocatalytic Performance under Solar Light Irradiation by Integrating Wide-band-gap Semiconductors, SnO2, SnTaO3 and Sn2Ta2O7
journal, January 2016


Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies
journal, October 1986


Representation of compounds for machine-learning prediction of physical properties
journal, April 2017


How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
journal, May 2014


Computational screening of perovskite metal oxides for optimal solar light capture
journal, January 2012

  • Castelli, Ivano E.; Olsen, Thomas; Datta, Soumendu
  • Energy Environ. Sci., Vol. 5, Issue 2
  • DOI: 10.1039/C1EE02717D

Big Data of Materials Science: Critical Role of the Descriptor
journal, March 2015


A high-throughput infrastructure for density functional theory calculations
journal, June 2011


Machine Learning Energies of 2 Million Elpasolite ( A B C 2 D 6 ) Crystals
journal, September 2016


The Inorganic Crystal Structure Database (ICSD)—Present and Future
journal, January 2004


Universal fragment descriptors for predicting properties of inorganic crystals
journal, June 2017

  • Isayev, Olexandr; Oses, Corey; Toher, Cormac
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15679

Materials Cartography: Representing and Mining Materials Space Using Structural and Electronic Fingerprints
journal, January 2015

  • Isayev, Olexandr; Fourches, Denis; Muratov, Eugene N.
  • Chemistry of Materials, Vol. 27, Issue 3
  • DOI: 10.1021/cm503507h

The thermodynamic scale of inorganic crystalline metastability
journal, November 2016

  • Sun, Wenhao; Dacek, Stephen T.; Ong, Shyue Ping
  • Science Advances, Vol. 2, Issue 11
  • DOI: 10.1126/sciadv.1600225

Covalent radii revisited
journal, January 2008

  • Cordero, Beatriz; Gómez, Verónica; Platero-Prats, Ana E.
  • Dalton Transactions, Issue 21
  • DOI: 10.1039/b801115j

Cubic lead perovskite PbMoO 3 with anomalous metallic behavior
journal, April 2017


Phase Transitions in Solid Solutions of PbZrO 3 and PbTiO 3 (II) X-ray Study
journal, January 1952

  • Shirane, Gen; Suzuki, Kazuo; Takeda, Akitsu
  • Journal of the Physical Society of Japan, Vol. 7, Issue 1
  • DOI: 10.1143/JPSJ.7.12

    Works referencing / citing this record:

    Extensive deep neural networks for transferring small scale learning to large scale systems
    journal, January 2019

    • Mills, Kyle; Ryczko, Kevin; Luchak, Iryna
    • Chemical Science, Vol. 10, Issue 15
    • DOI: 10.1039/c8sc04578j

    Band Gap Prediction for Large Organic Crystal Structures with Machine Learning
    journal, July 2019

    • Olsthoorn, Bart; Geilhufe, R. Matthias; Borysov, Stanislav S.
    • Advanced Quantum Technologies, Vol. 2, Issue 7-8
    • DOI: 10.1002/qute.201900023

    Recent advances and applications of machine learning in solid-state materials science
    journal, August 2019

    • Schmidt, Jonathan; Marques, Mário R. G.; Botti, Silvana
    • npj Computational Materials, Vol. 5, Issue 1
    • DOI: 10.1038/s41524-019-0221-0

    Band Gap Prediction for Large Organic Crystal Structures with Machine Learning
    journal, July 2019

    • Olsthoorn, Bart; Geilhufe, R. Matthias; Borysov, Stanislav S.
    • Advanced Quantum Technologies, Vol. 2, Issue 7-8
    • DOI: 10.1002/qute.201900023

    Recent advances and applications of machine learning in solid-state materials science
    journal, August 2019

    • Schmidt, Jonathan; Marques, Mário R. G.; Botti, Silvana
    • npj Computational Materials, Vol. 5, Issue 1
    • DOI: 10.1038/s41524-019-0221-0

    Extensive deep neural networks for transferring small scale learning to large scale systems
    journal, January 2019

    • Mills, Kyle; Ryczko, Kevin; Luchak, Iryna
    • Chemical Science, Vol. 10, Issue 15
    • DOI: 10.1039/c8sc04578j

    Thermodynamic Stability Landscape of Halide Double Perovskites via High-Throughput Computing and Machine Learning
    journal, January 2019

    • Li, Zhenzhu; Xu, Qichen; Sun, Qingde
    • Advanced Functional Materials, Vol. 29, Issue 9
    • DOI: 10.1002/adfm.201807280

    Predicting Thermal Properties of Crystals Using Machine Learning
    journal, December 2019

    • Tawfik, Sherif Abdulkader; Isayev, Olexandr; Spencer, Michelle J. S.
    • Advanced Theory and Simulations, Vol. 3, Issue 2
    • DOI: 10.1002/adts.201900208

    Data‐Driven Materials Science: Status, Challenges, and Perspectives
    journal, September 2019

    • Himanen, Lauri; Geurts, Amber; Foster, Adam Stuart
    • Advanced Science, Vol. 6, Issue 21
    • DOI: 10.1002/advs.201900808

    A Critical Review of Machine Learning of Energy Materials
    journal, January 2020


    Perspectives on the Impact of Machine Learning, Deep Learning, and Artificial Intelligence on Materials, Processes, and Structures Engineering
    journal, August 2018

    • Dimiduk, Dennis M.; Holm, Elizabeth A.; Niezgoda, Stephen R.
    • Integrating Materials and Manufacturing Innovation, Vol. 7, Issue 3
    • DOI: 10.1007/s40192-018-0117-8

    Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials
    journal, June 2019


    Graph similarity drives zeolite diffusionless transformations and intergrowth
    journal, October 2019


    A fast neural network approach for direct covariant forces prediction in complex multi-element extended systems
    journal, September 2019

    • Mailoa, Jonathan P.; Kornbluth, Mordechai; Batzner, Simon
    • Nature Machine Intelligence, Vol. 1, Issue 10
    • DOI: 10.1038/s42256-019-0098-0

    Machine learning material properties from the periodic table using convolutional neural networks
    journal, January 2018

    • Zheng, Xiaolong; Zheng, Peng; Zhang, Rui-Zhi
    • Chemical Science, Vol. 9, Issue 44
    • DOI: 10.1039/c8sc02648c

    Deep learning for automated classification and characterization of amorphous materials
    journal, January 2020

    • Swanson, Kirk; Trivedi, Shubhendu; Lequieu, Joshua
    • Soft Matter, Vol. 16, Issue 2
    • DOI: 10.1039/c9sm01903k

    New horizons in thermoelectric materials: Correlated electrons, organic transport, machine learning, and more
    journal, May 2019

    • Urban, Jeffrey J.; Menon, Akanksha K.; Tian, Zhiting
    • Journal of Applied Physics, Vol. 125, Issue 18
    • DOI: 10.1063/1.5092525

    Machine learning for interatomic potential models
    journal, February 2020

    • Mueller, Tim; Hernandez, Alberto; Wang, Chuhong
    • The Journal of Chemical Physics, Vol. 152, Issue 5
    • DOI: 10.1063/1.5126336

    Predicting HSE band gaps from PBE charge densities via neural network functionals
    journal, January 2020

    • Lentz, Levi C.; Kolpak, Alexie M.
    • Journal of Physics: Condensed Matter, Vol. 32, Issue 15
    • DOI: 10.1088/1361-648x/ab5f3a

    From DFT to machine learning: recent approaches to materials science–a review
    journal, May 2019

    • Schleder, Gabriel R.; Padilha, Antonio C. M.; Acosta, Carlos Mera
    • Journal of Physics: Materials, Vol. 2, Issue 3
    • DOI: 10.1088/2515-7639/ab084b

    Predicting charge density distribution of materials using a local-environment-based graph convolutional network
    journal, November 2019


    Self-Learning Perfect Optical Chirality via a Deep Neural Network
    journal, November 2019


    Machine learning with force-field-inspired descriptors for materials: Fast screening and mapping energy landscape
    journal, August 2018


    New tolerance factor to predict the stability of perovskite oxides and halides
    journal, February 2019

    • Bartel, Christopher J.; Sutton, Christopher; Goldsmith, Bryan R.
    • Science Advances, Vol. 5, Issue 2
    • DOI: 10.1126/sciadv.aav0693

    Inverse design of porous materials using artificial neural networks
    journal, January 2020


    Crystal symmetry determination in electron diffraction using machine learning
    journal, January 2020

    • Kaufmann, Kevin; Zhu, Chaoyi; Rosengarten, Alexander S.
    • Science, Vol. 367, Issue 6477
    • DOI: 10.1126/science.aay3062

    Deep materials informatics: Applications of deep learning in materials science
    journal, June 2019