skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: X-ray Studies of the Transformation from High-to Low-density Amorphous Water

Abstract

Here we report about the structural evolution during the conversion from high-density amorphous ices at ambient pressure to the low-density state. Using high-energy X-ray diffraction we have monitored the transformation by following in reciprocal space the structure factor SOO(Q) and derive in real space the pair distribution function gOO(r). Heating equilibrated high-density amorphous ice (eHDA) at a fast rate (4 K/min), the transition to the low-density form occurs very rapidly, while domains of both high- and low-density coexist. On the other hand, the transition in the case of unannealed HDA (uHDA) and very-high-density amorphous ice (VHDA) is more complex and of continuous nature. The direct comparison of eHDA and uHDA indicates that the molecular structure of uHDA contains a larger amount of tetrahedral motives. The different crystallization behavior of the derived low-density amorphous (LDA) states is interpreted as emanating from an increased tetrahedral coordination present in uHDA.

Authors:
; ; ; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
Swedish Research Council (SRC); European Research Council (ERC)
OSTI Identifier:
1523269
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Conference
Resource Relation:
Journal Volume: 377; Journal Issue: 2146; Conference: 4th International Conference on the Physics and Chemistry of Ice, 01/07/18 - 01/12/18, Zurich, CH
Country of Publication:
United States
Language:
English
Subject:
amorphous ice; ice; phase transistion; water

Citation Formats

Mariedahl, Daniel, Perakis, Fivos, Spah, Alexander, Pathak, Harshad, Kim, Kyung Hwan, Benmore, Chris, Nilsson, Anders, and Amann-Winkel, Katrin. X-ray Studies of the Transformation from High-to Low-density Amorphous Water. United States: N. p., 2019. Web. doi:10.1098/rsta.2018.0164.
Mariedahl, Daniel, Perakis, Fivos, Spah, Alexander, Pathak, Harshad, Kim, Kyung Hwan, Benmore, Chris, Nilsson, Anders, & Amann-Winkel, Katrin. X-ray Studies of the Transformation from High-to Low-density Amorphous Water. United States. doi:10.1098/rsta.2018.0164.
Mariedahl, Daniel, Perakis, Fivos, Spah, Alexander, Pathak, Harshad, Kim, Kyung Hwan, Benmore, Chris, Nilsson, Anders, and Amann-Winkel, Katrin. Mon . "X-ray Studies of the Transformation from High-to Low-density Amorphous Water". United States. doi:10.1098/rsta.2018.0164. https://www.osti.gov/servlets/purl/1523269.
@article{osti_1523269,
title = {X-ray Studies of the Transformation from High-to Low-density Amorphous Water},
author = {Mariedahl, Daniel and Perakis, Fivos and Spah, Alexander and Pathak, Harshad and Kim, Kyung Hwan and Benmore, Chris and Nilsson, Anders and Amann-Winkel, Katrin},
abstractNote = {Here we report about the structural evolution during the conversion from high-density amorphous ices at ambient pressure to the low-density state. Using high-energy X-ray diffraction we have monitored the transformation by following in reciprocal space the structure factor SOO(Q) and derive in real space the pair distribution function gOO(r). Heating equilibrated high-density amorphous ice (eHDA) at a fast rate (4 K/min), the transition to the low-density form occurs very rapidly, while domains of both high- and low-density coexist. On the other hand, the transition in the case of unannealed HDA (uHDA) and very-high-density amorphous ice (VHDA) is more complex and of continuous nature. The direct comparison of eHDA and uHDA indicates that the molecular structure of uHDA contains a larger amount of tetrahedral motives. The different crystallization behavior of the derived low-density amorphous (LDA) states is interpreted as emanating from an increased tetrahedral coordination present in uHDA.},
doi = {10.1098/rsta.2018.0164},
journal = {},
issn = {1364-503X},
number = 2146,
volume = 377,
place = {United States},
year = {2019},
month = {4}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:

Works referenced in this record:

How many amorphous ices are there?
journal, January 2011

  • Loerting, Thomas; Winkel, Katrin; Seidl, Markus
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 19
  • DOI: 10.1039/c0cp02600j

‘Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids
journal, August 1984

  • Mishima, O.; Calvert, L. D.; Whalley, E.
  • Nature, Vol. 310, Issue 5976
  • DOI: 10.1038/310393a0

Equilibrated High-Density Amorphous Ice and Its First-Order Transition to the Low-Density Form
journal, December 2011

  • Winkel, Katrin; Mayer, Erwin; Loerting, Thomas
  • The Journal of Physical Chemistry B, Vol. 115, Issue 48
  • DOI: 10.1021/jp203985w

Potential energy landscape of the apparent first-order phase transition between low-density and high-density amorphous ice
journal, December 2016

  • Giovambattista, Nicolas; Sciortino, Francesco; Starr, Francis W.
  • The Journal of Chemical Physics, Vol. 145, Issue 22
  • DOI: 10.1063/1.4968047

Colloquium : Water’s controversial glass transitions
journal, February 2016


Metastable liquid–liquid transition in a molecular model of water
journal, June 2014

  • Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang
  • Nature, Vol. 510, Issue 7505
  • DOI: 10.1038/nature13405

Phase behaviour of metastable water
journal, November 1992

  • Poole, Peter H.; Sciortino, Francesco; Essmann, Ulrich
  • Nature, Vol. 360, Issue 6402
  • DOI: 10.1038/360324a0

Stacking disorder in ice I
journal, January 2015

  • Malkin, Tamsin L.; Murray, Benjamin J.; Salzmann, Christoph G.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 1
  • DOI: 10.1039/C4CP02893G

Relationship between melting and amorphization of ice
journal, December 1996


A second distinct structural “state” of high-density amorphous ice at 77 K and 1 bar
journal, December 2001

  • Loerting, Thomas; Salzmann, Christoph; Kohl, Ingrid
  • Physical Chemistry Chemical Physics, Vol. 3, Issue 24
  • DOI: 10.1039/b108676f

Structure of a New Dense Amorphous Ice
journal, October 2002


Direct structural measurements of relaxation processes during transformations in amorphous ice
journal, November 2003


Water: A Tale of Two Liquids
journal, April 2016


Deuteron spin lattice relaxation in amorphous ices
journal, June 2006

  • Scheuermann, M.; Geil, B.; Winkel, K.
  • The Journal of Chemical Physics, Vol. 124, Issue 22
  • DOI: 10.1063/1.2204911

Relaxation effects in low density amorphous ice: Two distinct structural states observed by neutron diffraction
journal, May 2009

  • Winkel, K.; Bowron, D. T.; Loerting, T.
  • The Journal of Chemical Physics, Vol. 130, Issue 20
  • DOI: 10.1063/1.3139007

Structural Studies of Several Distinct Metastable Forms of Amorphous Ice
journal, August 2002


Experimental study of the polyamorphism of water. II. The isobaric transitions between HDA and VHDA at intermediate and high pressures
journal, March 2018

  • Handle, Philip H.; Loerting, Thomas
  • The Journal of Chemical Physics, Vol. 148, Issue 12
  • DOI: 10.1063/1.5019414

A new structural relaxation pathway of low-density amorphous ice
journal, May 2016

  • Shephard, Jacob J.; Klotz, Stefan; Vickers, Martin
  • The Journal of Chemical Physics, Vol. 144, Issue 20
  • DOI: 10.1063/1.4951013

Water polyamorphism: Reversibility and (dis)continuity
journal, January 2008

  • Winkel, Katrin; Elsaesser, Michael S.; Mayer, Erwin
  • The Journal of Chemical Physics, Vol. 128, Issue 4
  • DOI: 10.1063/1.2830029

Theory of amorphous ices
journal, May 2014

  • Limmer, David T.; Chandler, David
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 26
  • DOI: 10.1073/pnas.1407277111

Glass-liquid transition of water at high pressure
journal, June 2011


Interplay of the Glass Transition and the Liquid-Liquid Phase Transition in Water
journal, May 2012

  • Giovambattista, Nicolas; Loerting, Thomas; Lukanov, Boris R.
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00390

Searching for crystal-ice domains in amorphous ices
journal, July 2018


Cryoflotation: Densities of Amorphous and Crystalline Ices
journal, December 2011

  • Loerting, Thomas; Bauer, Marion; Kohl, Ingrid
  • The Journal of Physical Chemistry B, Vol. 115, Issue 48
  • DOI: 10.1021/jp204752w

High‐density amorphous ice. III. Thermal properties
journal, March 1986

  • Handa, Y. Paul; Mishima, Osamu; Whalley, Edward
  • The Journal of Chemical Physics, Vol. 84, Issue 5
  • DOI: 10.1063/1.450301

Formation and annealing of cubic ice: I. Modelling of stacking faults
journal, June 2008


Diffusive dynamics during the high-to-low density transition in amorphous ice
journal, June 2017

  • Perakis, Fivos; Amann-Winkel, Katrin; Lehmkühler, Felix
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 31
  • DOI: 10.1073/pnas.1705303114

Formation and annealing of cubic ice: II. Kinetic study
journal, June 2008


The structure of water around the compressibility minimum
journal, December 2014

  • Skinner, L. B.; Benmore, C. J.; Neuefeind, J. C.
  • The Journal of Chemical Physics, Vol. 141, Issue 21
  • DOI: 10.1063/1.4902412

Water's second glass transition
journal, October 2013

  • Amann-Winkel, K.; Gainaru, C.; Handle, P. H.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 44
  • DOI: 10.1073/pnas.1311718110

The local and intermediate range structures of the five amorphous ices at 80K and ambient pressure: A Faber-Ziman and Bhatia-Thornton analysis
journal, November 2006

  • Bowron, D. T.; Finney, J. L.; Hallbrucker, A.
  • The Journal of Chemical Physics, Vol. 125, Issue 19
  • DOI: 10.1063/1.2378921

Nature of the Polyamorphic Transition in Ice under Pressure
journal, January 2005


Extent and relevance of stacking disorder in "ice Ic"
journal, December 2012

  • Kuhs, W. F.; Sippel, C.; Falenty, A.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 52
  • DOI: 10.1073/pnas.1210331110

Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature
journal, June 2014

  • Sellberg, J. A.; Huang, C.; McQueen, T. A.
  • Nature, Vol. 510, Issue 7505
  • DOI: 10.1038/nature13266

Nature of Amorphous Polymorphism of Water
journal, April 2005


Insights into Phases of Liquid Water from Study of Its Unusual Glass-Forming Properties
journal, February 2008


Adding a Length Scale to the Polyamorphic Ice Debate
journal, September 2006


An apparently first-order transition between two amorphous phases of ice induced by pressure
journal, March 1985

  • Mishima, O.; Calvert, L. D.; Whalley, E.
  • Nature, Vol. 314, Issue 6006
  • DOI: 10.1038/314076a0

Is High-Density Amorphous Ice Simply a “Derailed” State along the Ice I to Ice IV Pathway?
journal, March 2017

  • Shephard, Jacob J.; Ling, Sanliang; Sosso, Gabriele C.
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 7
  • DOI: 10.1021/acs.jpclett.7b00492

X-ray Scattering and O–O Pair-Distribution Functions of Amorphous Ices
journal, July 2018

  • Mariedahl, Daniel; Perakis, Fivos; Späh, Alexander
  • The Journal of Physical Chemistry B, Vol. 122, Issue 30
  • DOI: 10.1021/acs.jpcb.8b04823

The glass–liquid transition of hyperquenched water
journal, December 1987

  • Johari, G. P.; Hallbrucker, Andreas; Mayer, Erwin
  • Nature, Vol. 330, Issue 6148
  • DOI: 10.1038/330552a0

Relaxation dynamics and transformation kinetics of deeply supercooled water: Temperature, pressure, doping, and proton/deuteron isotope effects
journal, July 2017

  • Lemke, Sonja; Handle, Philip H.; Plaga, Lucie J.
  • The Journal of Chemical Physics, Vol. 147, Issue 3
  • DOI: 10.1063/1.4993790

The relationship between liquid, supercooled and glassy water
journal, November 1998

  • Mishima, Osamu; Stanley, H. Eugene
  • Nature, Vol. 396, Issue 6709
  • DOI: 10.1038/24540

Pressure amorphized ices – an atomistic perspective
journal, January 2012

  • Tse, John S.; Klug, Dennis D.
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 23
  • DOI: 10.1039/c2cp40201g

Kinetics of the high- to low-density amorphous water transition
journal, January 2003


From parallel to single crystallization kinetics in high-density amorphous ice
journal, November 2013


One substance, two liquids?
journal, March 1998

  • Debenedetti, Pablo G.
  • Nature, Vol. 392, Issue 6672
  • DOI: 10.1038/32286

Annealed high-density amorphous ice under pressure
journal, May 2006

  • Nelmes, Richard J.; Loveday, John S.; Strässle, Thierry
  • Nature Physics, Vol. 2, Issue 6
  • DOI: 10.1038/nphys313

Investigation of the intermediate- and high-density forms of amorphous ice by molecular dynamics calculations and diffraction experiments
journal, June 2005


Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice
journal, September 2017


Limits of metastability in amorphous ices: the neutron scattering Debye–Waller factor
journal, January 2012

  • Amann-Winkel, Katrin; Löw, Florian; Handle, Philip H.
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 47
  • DOI: 10.1039/c2cp42797d

The mechanisms for pressure-induced amorphization of ice Ih
journal, August 1999

  • Tse, J. S.; Klug, D. D.; Tulk, C. A.
  • Nature, Vol. 400, Issue 6745
  • DOI: 10.1038/23216

Structures of High and Low Density Amorphous Ice by Neutron Diffraction
journal, May 2002


Limits of metastability in amorphous ices: 2 H-NMR relaxation
journal, January 2013

  • Löw, Florian; Amann-Winkel, Katrin; Geil, Burkhard
  • Phys. Chem. Chem. Phys., Vol. 15, Issue 2
  • DOI: 10.1039/C2CP43543H

Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q -range
journal, February 2013

  • Skinner, Lawrie B.; Huang, Congcong; Schlesinger, Daniel
  • The Journal of Chemical Physics, Vol. 138, Issue 7
  • DOI: 10.1063/1.4790861

Propagation of the polyamorphic transition of ice and the liquid–liquid critical point
journal, October 2002