skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions

Abstract

We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald’s step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Princeton Univ., NJ (United States). Dept. of Chemical and Biological Engineering
  2. Yale Univ., New Haven, CT (United States). Dept. of Chemical and Environmental Engineering
Publication Date:
Research Org.:
Princeton Univ., NJ (United States)
Sponsoring Org.:
USDOE; National Science Foundation (NSF)
OSTI Identifier:
1512939
Alternate Identifier(s):
OSTI ID: 1418078
Grant/Contract Number:  
SC0002128; TG-CHE170059
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 148; Journal Issue: 4; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Jiang, Hao, Haji-Akbari, Amir, Debenedetti, Pablo G., and Panagiotopoulos, Athanassios Z. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions. United States: N. p., 2018. Web. doi:10.1063/1.5016554.
Jiang, Hao, Haji-Akbari, Amir, Debenedetti, Pablo G., & Panagiotopoulos, Athanassios Z. Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions. United States. https://doi.org/10.1063/1.5016554
Jiang, Hao, Haji-Akbari, Amir, Debenedetti, Pablo G., and Panagiotopoulos, Athanassios Z. 2018. "Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions". United States. https://doi.org/10.1063/1.5016554. https://www.osti.gov/servlets/purl/1512939.
@article{osti_1512939,
title = {Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions},
author = {Jiang, Hao and Haji-Akbari, Amir and Debenedetti, Pablo G. and Panagiotopoulos, Athanassios Z.},
abstractNote = {We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a range of salt concentrations for the Joung-Cheatham NaCl force field combined with the Extended Simple Point Charge (SPC/E) water model. The calculated nucleation rates are significantly lower than the available experimental measurements. The estimates for the nucleation rates in this work do not rely on classical nucleation theory, but the pathways observed in the simulations suggest that the nucleation process is better described by classical nucleation theory than an alternative interpretation based on Ostwald’s step rule, in contrast to some prior simulations of related models. In addition to the size of NaCl nucleus, we find that the crystallinity of a nascent cluster plays an important role in the nucleation process. Nuclei with high crystallinity were found to have higher growth probability and longer lifetimes, possibly because they are less exposed to hydration water.},
doi = {10.1063/1.5016554},
url = {https://www.osti.gov/biblio/1512939}, journal = {Journal of Chemical Physics},
issn = {0021-9606},
number = 4,
volume = 148,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Cumulative probability (black) and the committor probability pc(λ) (blue) as a function of order parameter (λ) at S = 2.7 and at 298 K and 1 bar. Dashed lines are guides to the eye.

Save / Share:

Works referenced in this record:

Consensus on the solubility of NaCl in water from computer simulations using the chemical potential route
journal, March 2016


Forward flux sampling for rare event simulations
journal, October 2009


Molecular dynamics simulation in the grand canonical ensemble
journal, January 2007


Nucleation of NaCl from Aqueous Solution: Critical Sizes, Ion-Attachment Kinetics, and Rates
journal, October 2015


Pharmaceutical Crystallization
journal, April 2011


Sampling Rare Switching Events in Biochemical Networks
journal, January 2005


Molecular simulation of thermodynamic and transport properties for the H 2 O+NaCl system
journal, December 2014


Computational investigation of structure, dynamics and nucleation kinetics of a family of modified Stillinger–Weber model fluids in bulk and free-standing thin films
journal, January 2016


Metastability Limit for the Nucleation of NaCl Crystals in Confinement
journal, February 2014


GROMACS: Fast, flexible, and free
journal, January 2005


Molecular Simulations of Aqueous Electrolyte Solubility:  1. The Expanded-Ensemble Osmotic Molecular Dynamics Method for the Solution Phase
journal, July 2005


Rate of homogeneous crystal nucleation in molten NaCl
journal, May 2005


Ion-Induced Nucleation in Solution :  Promotion of Solute Nucleation in Charged Levitated Droplets
journal, September 2007


Recent progress in molecular simulation of aqueous electrolytes: force fields, chemical potentials and solubility
journal, March 2016


Forward flux sampling-type schemes for simulating rare events: Efficiency analysis
journal, May 2006


Atomistic Mechanism of NaCl Nucleation from an Aqueous Solution
journal, January 2004


Direct calculation of ice homogeneous nucleation rate for a molecular model of water
journal, August 2015


Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters
journal, October 2009


Efflorescence Relative Humidity of Mixed Sodium Chloride and Sodium Sulfate Particles
journal, October 2007


Cluster formation in highly supersaturated solution droplets
journal, May 1994


Chemical treatment technologies for waste-water recycling—an overview
journal, January 2012


Solubility of NaCl in water by molecular simulation revisited
journal, June 2012


PLUMED 2: New feathers for an old bird
journal, February 2014


On the calculation of solubilities via direct coexistence simulations: Investigation of NaCl aqueous solutions and Lennard-Jones binary mixtures
journal, October 2016


Thermodynamic and Transport Properties of H 2 O + NaCl from Polarizable Force Fields
journal, July 2015


Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations
journal, May 2016


How Crystals Nucleate and Grow in Aqueous NaCl Solution
journal, January 2013


LINCS: A linear constraint solver for molecular simulations
journal, September 1997


Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations
journal, July 2015


Energy component analysis for dilute aqueous solutions of lithium(1+), sodium(1+), fluoride(1-), and chloride(1-) ions
journal, February 1984


Birth of NaCl Crystals: Insights from Molecular Simulations
journal, August 2016


Bond-orientational order in liquids and glasses
journal, July 1983


A molecular dynamics method for simulations in the canonical ensemble
journal, June 1984


Heterogeneous Ice Nucleation Controlled by the Coupling of Surface Crystallinity and Surface Hydrophilicity
journal, January 2016


Surface-induced crystallization in supercooled tetrahedral liquids
journal, August 2009


Nucleation pathway and kinetics of phase-separating active Brownian particles
journal, January 2016


Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems
journal, June 1993


The Ostwald step rule
journal, November 1984


Perspective: Surface freezing in water: A nexus of experiments and simulations
journal, August 2017


Polymorphic transitions in single crystals: A new molecular dynamics method
journal, December 1981


Ion-water interaction potentials derived from free energy perturbation simulations
journal, October 1990


Computational investigation of surface freezing in a molecular model of water
journal, March 2017


Salt Crystallization from an Evaporating Aqueous Solution by Molecular Dynamics Simulations
journal, August 2003


Ions in water: From ion clustering to crystal nucleation
journal, December 2007


Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes
journal, September 1974


Simultaneous estimation of free energies and rates using forward flux sampling and mean first passage times
journal, December 2015


The missing term in effective pair potentials
journal, November 1987


Probing Methane Hydrate Nucleation through the Forward Flux Sampling Method
journal, June 2014


Evidence that crystal nucleation in aqueous NaCl solution Occurs by the two-step mechanism
journal, November 2013


Transient Polymorphism in NaCl
journal, May 2013


LINCS: A linear constraint solver for molecular simulations
journal, September 1997


Improving the specificity of organophosphorus hydrolase to acephate by mutagenesis at its binding site: a computational study
journal, May 2021


Works referencing / citing this record:

NaCl nucleation from brine in seeded simulations: Sources of uncertainty in rate estimates
journal, June 2018


Communication: Nucleation rates of supersaturated aqueous NaCl using a polarizable force field
journal, October 2018


Nucleation in aqueous NaCl solutions shifts from 1-step to 2-step mechanism on crossing the spinodal
journal, March 2019


Liquid-liquid separation of aqueous solutions: A molecular dynamics study
journal, June 2019


Seeding approach to bubble nucleation in superheated Lennard-Jones fluids
journal, November 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.