skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR

Abstract

The influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation ($$I\sim 2\times 10^{14}~\text{W}\cdot \text{cm}^{-2}$$) of a multilayer target generates a shock wave that produces a rear side plasma expanding flow. Immersed in a homogeneous 10 T external magnetic field, this plasma flow propagates in vacuum and impacts an obstacle located a few mm from the main target. A reverse shock is then formed with typical velocities of the order of 15–20$$\pm$$5 km/s. The experimental results are compared with 2D radiative magnetohydrodynamic simulations using the FLASH code. This platform allows investigating the dynamics of reverse shock, mimicking the processes occurring in a cataclysmic variable of polar type.

Authors:
 [1];  [2];  [3];  [3];  [3];  [1];  [1];  [1];  [4];  [5];  [2];  [6];  [7];  [5];  [7];  [4];  [8];  [9];  [4];  [10] more »;  [10];  [11];  [12];  [13];  [13];  [3];  [14] « less
  1. Ecole Polytechnique, Palaiseau (France)
  2. Alternative Energies and Atomic Energy Commission (CEA), Arpajon (France); Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France)
  3. Helmholtz-Zentrum Dresden, (Germany)
  4. Osaka Univ. (Japan)
  5. National Research Nuclear Univ., Moscow (Russian Federation); JIHT-RAS, Moscow (Russia)
  6. Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA-Saclay), Gif-sur-Yvette (France)
  7. Univ. of Oxford (United Kingdom)
  8. CNRS/IN2P3. Univ. Paris (France). Observatoire de Paris. AstroParticule et Cosmologie (APC)
  9. Kyushu Univ. (Japan)
  10. Univ. of Michigan, Ann Arbor, MI (United States)
  11. General Atomics, San Diego, CA (United States)
  12. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  13. Univ. of Chicago, IL (United States)
  14. Ecole Polytechnique, Palaiseau (France); Osaka Univ. (Japan)
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1511431
Grant/Contract Number:  
NA0002956
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
High Power Laser Science and Engineering
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2095-4719
Publisher:
Cambridge University Press
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Albertazzi, B., Falize, E., Pelka, A., Brack, F., Kroll, F., Yurchak, R., Brambrink, E., Mabey, P., Ozaki, N., Pikuz, S., Van Box Som, L., Bonnet-Bidaud, J. M., Cross, J. E., Filippov, E., Gregori, G., Kodama, R., Mouchet, M., Morita, T., Sakawa, Y., Drake, R. P., Kuranz, C. C., Manuel, M. J. -E., Li, C., Tzeferacos, P., Lamb, D., Schramm, U., and Koenig, M. Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR. United States: N. p., 2018. Web. doi:10.1017/hpl.2018.37.
Albertazzi, B., Falize, E., Pelka, A., Brack, F., Kroll, F., Yurchak, R., Brambrink, E., Mabey, P., Ozaki, N., Pikuz, S., Van Box Som, L., Bonnet-Bidaud, J. M., Cross, J. E., Filippov, E., Gregori, G., Kodama, R., Mouchet, M., Morita, T., Sakawa, Y., Drake, R. P., Kuranz, C. C., Manuel, M. J. -E., Li, C., Tzeferacos, P., Lamb, D., Schramm, U., & Koenig, M. Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR. United States. doi:10.1017/hpl.2018.37.
Albertazzi, B., Falize, E., Pelka, A., Brack, F., Kroll, F., Yurchak, R., Brambrink, E., Mabey, P., Ozaki, N., Pikuz, S., Van Box Som, L., Bonnet-Bidaud, J. M., Cross, J. E., Filippov, E., Gregori, G., Kodama, R., Mouchet, M., Morita, T., Sakawa, Y., Drake, R. P., Kuranz, C. C., Manuel, M. J. -E., Li, C., Tzeferacos, P., Lamb, D., Schramm, U., and Koenig, M. Mon . "Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR". United States. doi:10.1017/hpl.2018.37. https://www.osti.gov/servlets/purl/1511431.
@article{osti_1511431,
title = {Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR},
author = {Albertazzi, B. and Falize, E. and Pelka, A. and Brack, F. and Kroll, F. and Yurchak, R. and Brambrink, E. and Mabey, P. and Ozaki, N. and Pikuz, S. and Van Box Som, L. and Bonnet-Bidaud, J. M. and Cross, J. E. and Filippov, E. and Gregori, G. and Kodama, R. and Mouchet, M. and Morita, T. and Sakawa, Y. and Drake, R. P. and Kuranz, C. C. and Manuel, M. J. -E. and Li, C. and Tzeferacos, P. and Lamb, D. and Schramm, U. and Koenig, M.},
abstractNote = {The influence of a strong external magnetic field on the collimation of a high Mach number plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation ($I\sim 2\times 10^{14}~\text{W}\cdot \text{cm}^{-2}$) of a multilayer target generates a shock wave that produces a rear side plasma expanding flow. Immersed in a homogeneous 10 T external magnetic field, this plasma flow propagates in vacuum and impacts an obstacle located a few mm from the main target. A reverse shock is then formed with typical velocities of the order of 15–20$\pm$5 km/s. The experimental results are compared with 2D radiative magnetohydrodynamic simulations using the FLASH code. This platform allows investigating the dynamics of reverse shock, mimicking the processes occurring in a cataclysmic variable of polar type.},
doi = {10.1017/hpl.2018.37},
journal = {High Power Laser Science and Engineering},
issn = {2095-4719},
number = ,
volume = 6,
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Scaling of Magneto-Quantum-Radiative Hydrodynamic Equations: from Laser-Produced Plasmas to Astrophysics
journal, October 2014


Quasi-periodic oscillations in accreting magnetic white dwarfs: I. Observational constraints in X-ray and optical
journal, June 2015


An electron conductivity model for dense plasmas
journal, January 1984

  • Lee, Y. T.; More, R. M.
  • Physics of Fluids, Vol. 27, Issue 5
  • DOI: 10.1063/1.864744

POLAR project: a numerical study to optimize the target design
journal, March 2013


Radiative reverse shock laser experiments relevant to accretion processes in cataclysmic variables
journal, May 2013

  • Krauland, C. M.; Drake, R. P.; Kuranz, C. C.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4805023

Experimental astrophysics with high power lasers and Z pinches
journal, August 2006

  • Remington, Bruce A.; Drake, R. Paul; Ryutov, Dmitri D.
  • Reviews of Modern Physics, Vol. 78, Issue 3
  • DOI: 10.1103/RevModPhys.78.755

High-energy density laboratory astrophysics studies of accretion shocks in magnetic cataclysmic variables
journal, March 2012


Laboratory unraveling of matter accretion in young stars
journal, November 2017

  • Revet, Guilhem; Chen, Sophia N.; Bonito, Rosaria
  • Science Advances, Vol. 3, Issue 11
  • DOI: 10.1126/sciadv.1700982

A VLT-ULTRACAM study of the fast optical quasi-periodic oscillations in the polar V834 Centauri
journal, March 2017


Classification of and recent research involving radiative shocks
journal, December 2008


Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena
journal, April 2000

  • Ryutov, D. D.; Drake, R. P.; Remington, B. A.
  • The Astrophysical Journal Supplement Series, Vol. 127, Issue 2
  • DOI: 10.1086/313320

Short-pulse laser-driven x-ray radiography
journal, January 2016

  • Brambrink, E.; Baton, S.; Koenig, M.
  • High Power Laser Science and Engineering, Vol. 4
  • DOI: 10.1017/hpl.2016.31

Laboratory radiative accretion shocks on GEKKO XII laser facility for POLAR project
journal, January 2018

  • Van Box Som, L.; Falize, É.; Koenig, M.
  • High Power Laser Science and Engineering, Vol. 6
  • DOI: 10.1017/hpl.2018.32

Experimental results from magnetized-jet experiments executed at the Jupiter Laser Facility
journal, December 2015


The scalability of the accretion column in magnetic cataclysmic variables: the POLAR project
journal, March 2011


Linear analysis of an oscillatory instability of radiative shock waves
journal, October 1982

  • Chevalier, R. A.; Imamura, J. N.
  • The Astrophysical Journal, Vol. 261
  • DOI: 10.1086/160364

YSO accretion shocks: magnetic, chromospheric or stochastic flow effects can suppress fluctuations of X-ray emission
journal, September 2013


Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field
journal, October 2014


Observation of Laser Driven Supercritical Radiative Shock Precursors
journal, June 2004


Oscillatory instability of radiative shocks with transverse magnetic field - Linear analysis and nonlinear simulations
journal, August 1993

  • Toth, G.; Draine, B. T.
  • The Astrophysical Journal, Vol. 413
  • DOI: 10.1086/172986

Laboratory analogue of a supersonic accretion column in a binary star system
journal, June 2016

  • Cross, J. E.; Gregori, G.; Foster, J. M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11899

Reverse Radiative Shock Laser Experiments Relevant to Accreting Stream-Disk Impact in Interacting Binaries
journal, December 2012


Similarity Properties and Scaling laws of Radiation Hydrodynamic Flows in Laboratory Astrophysics
journal, March 2011


Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields
journal, April 2013

  • Albertazzi, B.; Béard, J.; Ciardi, A.
  • Review of Scientific Instruments, Vol. 84, Issue 4
  • DOI: 10.1063/1.4795551