skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Barocaloric and magnetocaloric effects in (MnNiSi) 1-x(FeCoGe) x

Abstract

(MnNiSi) 1-x(FeCoGe) x undergoes a magnetostructural phase transition near room temperature that is acutely sensitive to applied hydrostatic pressure, which presents as a marked shift in the martensitic transition temperature (T M) by about –7.5 K/kbar. The magnetostructural transition can therefore be induced by applied hydrostatic pressure or by magnetic field. The barocaloric and magnetocaloric effects were measured across T M (for the sample with x = 0.38), and the corresponding entropy changes were +74 J/kg K (P = 2.7 kbar) and –58 J/kg K (μ 0 H = 5 T), respectively. It was observed here that the transition entropy change increases with pressure, which results in an enhancement of the barocaloric effect. Our measurements show that the transformed phase fraction associated with magnetostructural transition does not depend on pressure and, therefore, this enhancement cannot be attributed to a pressure-assisted completion of the phase transformation.

Authors:
 [1]; ORCiD logo [2];  [1];  [1];  [1];  [3];  [1];  [1]; ORCiD logo [2]; ORCiD logo [2];  [3];  [1]
  1. Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics and Astronomy
  2. Polytechnic Univ. of Catalonia, Barcelona (Spain). Dept. of Physics. Barcelona Research Center in Multiscale Science and Engineering
  3. Southern Illinois Univ., Carbondale, IL (United States). Dept. of Physics
Publication Date:
Research Org.:
Southern Illinois Univ., Carbondale, IL (United States); Louisiana State Univ., Baton Rouge, LA (United States); Polytechnic Univ. of Catalonia, Barcelona (Spain)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF); Interministerial Commission of Science and Technology (CICYT) (Spain); Catalan Government
OSTI Identifier:
1510947
Alternate Identifier(s):
OSTI ID: 1416647
Grant/Contract Number:  
FG02-06ER46291; FG02-13ER46946; FG02-07ER46420; SC0010521; 1306392; FIS2014-54734-P; 2014SGR-00581
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 112; Journal Issue: 2; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; magnetism; hydrostatics; chemical elements; thermodynamic measurements and instrumentation; phase transitions; thermodynamic properties; entropy; ferromagnetic materials; thermodynamic states and processes; thermal instruments

Citation Formats

Samanta, Tapas, Lloveras, Pol, Us Saleheen, Ahmad, Lepkowski, Daniel L., Kramer, Emily, Dubenko, Igor, Adams, Philip W., Young, David P., Barrio, Maria, Tamarit, Josep Ll., Ali, Naushad, and Stadler, Shane. Barocaloric and magnetocaloric effects in (MnNiSi)1-x(FeCoGe)x. United States: N. p., 2018. Web. doi:10.1063/1.5011743.
Samanta, Tapas, Lloveras, Pol, Us Saleheen, Ahmad, Lepkowski, Daniel L., Kramer, Emily, Dubenko, Igor, Adams, Philip W., Young, David P., Barrio, Maria, Tamarit, Josep Ll., Ali, Naushad, & Stadler, Shane. Barocaloric and magnetocaloric effects in (MnNiSi)1-x(FeCoGe)x. United States. doi:10.1063/1.5011743.
Samanta, Tapas, Lloveras, Pol, Us Saleheen, Ahmad, Lepkowski, Daniel L., Kramer, Emily, Dubenko, Igor, Adams, Philip W., Young, David P., Barrio, Maria, Tamarit, Josep Ll., Ali, Naushad, and Stadler, Shane. Thu . "Barocaloric and magnetocaloric effects in (MnNiSi)1-x(FeCoGe)x". United States. doi:10.1063/1.5011743. https://www.osti.gov/servlets/purl/1510947.
@article{osti_1510947,
title = {Barocaloric and magnetocaloric effects in (MnNiSi)1-x(FeCoGe)x},
author = {Samanta, Tapas and Lloveras, Pol and Us Saleheen, Ahmad and Lepkowski, Daniel L. and Kramer, Emily and Dubenko, Igor and Adams, Philip W. and Young, David P. and Barrio, Maria and Tamarit, Josep Ll. and Ali, Naushad and Stadler, Shane},
abstractNote = {(MnNiSi)1-x(FeCoGe)x undergoes a magnetostructural phase transition near room temperature that is acutely sensitive to applied hydrostatic pressure, which presents as a marked shift in the martensitic transition temperature (TM) by about –7.5 K/kbar. The magnetostructural transition can therefore be induced by applied hydrostatic pressure or by magnetic field. The barocaloric and magnetocaloric effects were measured across TM (for the sample with x = 0.38), and the corresponding entropy changes were +74 J/kg K (P = 2.7 kbar) and –58 J/kg K (μ0 H = 5 T), respectively. It was observed here that the transition entropy change increases with pressure, which results in an enhancement of the barocaloric effect. Our measurements show that the transformed phase fraction associated with magnetostructural transition does not depend on pressure and, therefore, this enhancement cannot be attributed to a pressure-assisted completion of the phase transformation.},
doi = {10.1063/1.5011743},
journal = {Applied Physics Letters},
issn = {0003-6951},
number = 2,
volume = 112,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (a) Temperature dependence of the magnetization (M) with μ0H = 0.1 T for different applied hydrostatic pressures (P) and at ambient pressure for (MnNiSi)1–x(FeCoGe)x (x = 0.38) (left axis). M(T) for the 5 T applied magnetic field (red line and symbols) is referred to the right axis. Themore » dotted arrows indicate the shifts of the transition with pressure and magnetic field. (b) Calorimetric heat flow curves (dq/dT = $\dot{q}$ / $\dot{T}$ ) for selected values of hydrostatic pressure.« less

Save / Share:

Works referenced in this record:

Crystal and magnetic structure of NiMnGe
journal, December 1976

  • Bazela, W.; Szytuła, A.; Todorović, J.
  • Physica Status Solidi (a), Vol. 38, Issue 2
  • DOI: 10.1002/pssa.2210380235

Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature
journal, December 2015

  • Wu, Rong-Rong; Bao, Li-Fu; Hu, Feng-Xia
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep18027

Magnetic method of magnetocaloric effect determination in high pulsed magnetic fields
journal, June 1997

  • Levitin, R. Z.; Snegirev, V. V.; Kopylov, A. V.
  • Journal of Magnetism and Magnetic Materials, Vol. 170, Issue 1-2
  • DOI: 10.1016/S0304-8853(96)00688-9

Effects of hydrostatic pressure on the magnetism and martensitic transition of Ni–Mn–In magnetic superelastic alloys
journal, January 2008

  • Mañosa, Lluís; Moya, Xavier; Planes, Antoni
  • Applied Physics Letters, Vol. 92, Issue 1
  • DOI: 10.1063/1.2830999

Crystal and magnetic structure of CoMnGe, CoFeGe, FeMnGe and NiFeGe
journal, December 1981

  • SzytuŁa, A.; Pȩdziwiatr, A. T.; Tomkowicz, Z.
  • Journal of Magnetism and Magnetic Materials, Vol. 25, Issue 2
  • DOI: 10.1016/0304-8853(81)90116-5

Entropy change upon magnetic field and pressure variations
journal, January 2007

  • de Oliveira, N. A.
  • Applied Physics Letters, Vol. 90, Issue 5
  • DOI: 10.1063/1.2434154

Giant magnetocaloric effect driven by structural transitions
journal, May 2012

  • Liu, Jian; Gottschall, Tino; Skokov, Konstantin P.
  • Nature Materials, Vol. 11, Issue 7
  • DOI: 10.1038/nmat3334

Giant magnetocaloric effects by tailoring the phase transitions
journal, April 2010

  • Trung, N. T.; Zhang, L.; Caron, L.
  • Applied Physics Letters, Vol. 96, Issue 17
  • DOI: 10.1063/1.3399773

Caloric materials near ferroic phase transitions
journal, April 2014

  • Moya, X.; Kar-Narayan, S.; Mathur, N. D.
  • Nature Materials, Vol. 13, Issue 5
  • DOI: 10.1038/nmat3951

Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate
journal, November 2015

  • Lloveras, P.; Stern-Taulats, E.; Barrio, M.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9801

Transition-metal-based magnetic refrigerants for room-temperature applications
journal, January 2002

  • Tegus, O.; Brück, E.; Buschow, K. H. J.
  • Nature, Vol. 415, Issue 6868
  • DOI: 10.1038/415150a

Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2
journal, August 2012

  • Yuce, Suheyla; Barrio, Maria; Emre, Baris
  • Applied Physics Letters, Vol. 101, Issue 7
  • DOI: 10.1063/1.4745920

Effects of hydrostatic pressure on magnetostructural transitions and magnetocaloric properties in (MnNiSi)1−x(FeCoGe)x
journal, March 2015

  • Samanta, Tapas; Lepkowski, Daniel L.; Saleheen, Ahmad Us
  • Journal of Applied Physics, Vol. 117, Issue 12
  • DOI: 10.1063/1.4916339

Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn 1-x CoGe alloys
journal, July 2010


Materials with Giant Mechanocaloric Effects: Cooling by Strength
journal, December 2016


Pressure dependence of the magnetic transition temperature of the CoMnGe 1-x Si x system
journal, July 1989


Hydrostatic pressure-induced modifications of structural transitions lead to large enhancements of magnetocaloric effects in MnNiSi-based systems
journal, January 2015


New developments in caloric materials for cooling applications
journal, June 2015

  • Crossley, S.; Mathur, N. D.; Moya, X.
  • AIP Advances, Vol. 5, Issue 6
  • DOI: 10.1063/1.4922871

Giant Magnetocaloric Effect in Gd5(Si2Ge2)
journal, June 1997


Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy
journal, April 2010

  • Mañosa, Lluís; González-Alonso, David; Planes, Antoni
  • Nature Materials, Vol. 9, Issue 6
  • DOI: 10.1038/nmat2731

Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN
journal, October 2014

  • Matsunami, Daichi; Fujita, Asaya; Takenaka, Koshi
  • Nature Materials, Vol. 14, Issue 1
  • DOI: 10.1038/nmat4117

Reversible adiabatic temperature changes at the magnetocaloric and barocaloric effects in Fe 49 Rh 51
journal, October 2015

  • Stern-Taulats, Enric; Gràcia-Condal, Adrià; Planes, Antoni
  • Applied Physics Letters, Vol. 107, Issue 15
  • DOI: 10.1063/1.4933409

Coupled nature of magnetic and structural transition in MnNiGe under pressure
journal, September 1978


Large reversible entropy change at the inverse magnetocaloric effect in Ni-Co-Mn-Ga-In magnetic shape memory alloys
journal, June 2013

  • Emre, Baris; Yüce, Süheyla; Stern-Taulats, Enric
  • Journal of Applied Physics, Vol. 113, Issue 21
  • DOI: 10.1063/1.4808340

Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets
journal, January 2012

  • Liu, Enke; Wang, Wenhong; Feng, Lin
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1868

The tunable magnetostructural transition in MnNiSi-FeNiGe system
journal, September 2013

  • Zhang, C. L.; Wang, D. H.; Han, Z. D.
  • Applied Physics Letters, Vol. 103, Issue 13
  • DOI: 10.1063/1.4823510

Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound
journal, September 2011

  • Mañosa, Lluís; González-Alonso, David; Planes, Antoni
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1606

Barocaloric and magnetocaloric effects in Fe 49 Rh 51
journal, June 2014


Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures
journal, June 2017

  • Bermúdez-García, Juan M.; Sánchez-Andújar, Manuel; Castro-García, Socorro
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15715

Magnetic properties of CoMnSi and CoMnSi0.85Ge0.15
journal, January 1979

  • Nizioł, S.; Fruchart, R.; Senateur, J. P.
  • Physica Status Solidi (a), Vol. 51, Issue 1
  • DOI: 10.1002/pssa.2210510142

Pressure enhancement of the giant magnetocaloric effect in LaFe11.6Si1.4
journal, October 2006

  • Sun, Young; Arnold, Z.; Kamarad, J.
  • Applied Physics Letters, Vol. 89, Issue 17
  • DOI: 10.1063/1.2372584

Magnetic-field-induced shape recovery by reverse phase transformation
journal, February 2006


Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys
journal, May 2005

  • Krenke, Thorsten; Duman, Eyüp; Acet, Mehmet
  • Nature Materials, Vol. 4, Issue 6
  • DOI: 10.1038/nmat1395

Recent developments in magnetocaloric materials
journal, May 2005

  • Gschneidner, K. A.; Pecharsky, V. K.; Tsokol, A. O.
  • Reports on Progress in Physics, Vol. 68, Issue 6, p. 1479-1539
  • DOI: 10.1088/0034-4885/68/6/R04

Stress modulated martensitic transition and magnetocaloric effect in hexagonal Ni2In-type MnCoGe1−xInx alloys
journal, November 2015


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.