skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of an Ionization Readout Tile for nEXO

Abstract

Anewdesign for the anode of a time projection chamber, consisting of a charge-detecting "tile", is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3 mm wide, on a 10 cm 10 cm fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so a Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a 207Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic fieldmore » of the detector. An energy resolution E=5.5% is observed at 570 keV, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936 V/cm.« less

Authors:
 [1];  [1];  [2];  [1];  [1];  [3];  [1];  [4];  [1];  [5];  [1];  [6];  [2];  [2];  [7];  [8];  [9];  [10];  [11];  [12] more »;  [13];  [14];  [15];  [16]; ;  [17];  [18];  [19];  [20];  [21];  [15];  [22];  [23];  [13];  [24];  [25];  [15];  [26];  [8];  [27];  [26];  [23];  [28];  [29]; ;  [30];  [26];  [24];  [23];  [6];  [15];  [1];  [22];  [25];  [30];  [24];  [27];  [31]; ORCiD logo [10];  [32];  [4];  [28];  [4];  [33];  [24];  [34];  [35];  [18];  [8];  [25];  [1];  [29];  [18];  [36];  [29];  [37];  [38];  [39];  [25];  [30];  [27];  [4];  [5];  [39];  [33];  [3];  [34];  [36];  [15];  [40];  [26]; ORCiD logo [10];  [28];  [10];  [10];  [15];  [41];  [15];  [22];  [22];  [22];  [22];  [29];  [23];  [29];  [5];  [15]; ORCiD logo [10];  [42];  [4];  [43];  [25];  [44];  [28];  [15];  [45];  [32];  [34];  [36];  [24];  [7];  [10];  [22];  [15];  [28];  [8];  [46];  [4];  [1];  [34];  [23];  [4];  [1];  [34];  [38];  [30];  [47];  [34];  [2];  [48];  [4] « less
  1. Stanford University
  2. Chinese Academy of Sciences
  3. Oak Ridge National Laboratory
  4. Friedrich-Alexander-Universitat Erlangen-Nurnberg
  5. SLAC National Accelerator Lab
  6. University of Massachusetts at Amherst
  7. Institute of High Energy Physics
  8. Indiana University-Bloomington
  9. Friedrich-Alexander-University
  10. BATTELLE (PACIFIC NW LAB)
  11. Carleton Univeristy, Ontairo Canada
  12. University of Chicago
  13. University of Illinois
  14. Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National
  15. Universite de Sherbrooke
  16. Princeton University
  17. TRIUMF, Vancouver, BC, Canada
  18. Institute for Theoretical and Experimental Physics
  19. Institute of High nergy Physics, Beijing, China
  20. High Magnetic Field Laboratory, Chinese Academy of Sciences
  21. Colorado State University, Fort Collins, Colorado
  22. Brookhaven National Laboratory
  23. Laurentian University of Sudbury
  24. Colorado State University
  25. Carleton University
  26. SLAC National Accelerator Laboratory
  27. University of South Dakota
  28. University of Alabama - Tuscaloosa
  29. TRIUMF
  30. Drexel University
  31. LLNL
  32. Lawrence Livermore National Laboratory
  33. McGill University
  34. Institute of High Energy Physics, Chinese Academy of Sciences
  35. University of Massachusetts
  36. Stony Brook University
  37. IBS Center for Underground Physics in Korea
  38. University of Illinois at Urbana-Champaign
  39. Yale University
  40. Rensselaer Polytechnic Institute
  41. University of Alabama in Huntsville
  42. Lawrence Livermore National Lab
  43. Max Planck Institute for Chemistry, Mainz, Germany
  44. SLAC
  45. Institute for Theoretical and Experimental PHysics, Moscow, Russia
  46. Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, Switzerland
  47. Institute for Theoretical adn Experimental Physics
  48. Chinese Academy of Sciences, Beijing, China
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1510270
Report Number(s):
PNNL-SA-130966
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Journal of Instrumentation
Additional Journal Information:
Journal Volume: 13; Journal Issue: 1
Country of Publication:
United States
Language:
English

Citation Formats

Jewell, M J., Schubert, A, Cen, W R., Dalmasson, J, Devoe, R, Fabris, L, Gratta, G, Jamil, A, Li, G, Odian, A, Patel, M, Pocar, A, Qiu, Dongru, Wang, Q, Wen, L J., Albert, J B., Anton, G, Arnquist, Isaac J., Badhrees, I, Barbeau, P S., Beck, D, Belov, V, Bourque, F, Brodsky, J, Brown, E, Brunner, T, Burenkov, A, Cao, G F., Cao, Liang, Chambers, C, Charlebois, S A., Chiu, M, Cleveland, B, Coon, M, Craycraft, A, Cree, W, Cote, M, Daniels, T, Daugherty, S J., Daughhetee, J, Delaquis, S, Der Mesrobian-Kabakian, A, Didberidze, T, Dilling, Jens, Ding, Y Y., Dolinski, M J., Dragone, A, Fairbank, W, Farine, J, Feyzbakhsh, S, Fontaine, R, Fudenberg, D, Giacomini, G, Gornea, R, Hansen, E V., Harris, D, Hasan, M, Heffner, Mike, Hoppe, Eric W., House, A, Hufschmidt, P, Hughes, M, Hoessl, J, Ito, Y, Iverson, A, Jiang, X S., Johnston, S, Karelin, A, Kaufman, L J., Koffas, T, Kravitz, S, Krucken, R, Kuchenkov, A, Kumar, K S., Lan, Y, Leonard, D S., Li, S, Li, Z, Licciardi, C, Lin, Y H., Maclellan, R, Michel, T, Mong, B, Moore, D, Murray, K, Newby, Robert J., Ning, Z, Njoya, O, Nolet, F, Odgers, K, Oriunno, M, Orrell, John L., Ostrovskiy, I, Overman, Cory T., Ortega, Gabriel SU, Parent, S, Piepke, A, Pratte, J-F, Radeka, V, Raguzin, E, Rao, T, Rescia, S, Retiere, F, Robinson, A, Rossignol, T, Rowson, P C., Roy, N, Saldanha, Richard N., Sangiorgio, Samuele, Schmidt, S, Schneider, J, Sinclair, D, Skarpaas, K, Soma, A K., St-Hilaire, G, Stekhanov, V, Stiegler, T, Sun, X L., Tarka, M, Todd, J, Tolba, T, Tsang, Hei Man, Tsang, T, Vachon, F, Veeraraghavan, V, Visser, G, Vuilleumier, Laurent, Wagenpfeil, M, Weber, M, Wei, W, Wichoski, U, Wrede, G, Wu, S X., Wu, W H., Yang, L, Yen, Y R., Zeldovich, O Y., Zhang, X, Zhao, Jiali, Zhou, Yuquan, and Ziegler, T. Characterization of an Ionization Readout Tile for nEXO. United States: N. p., 2018. Web. doi:10.1088/1748-0221/13/01/P01006.
Jewell, M J., Schubert, A, Cen, W R., Dalmasson, J, Devoe, R, Fabris, L, Gratta, G, Jamil, A, Li, G, Odian, A, Patel, M, Pocar, A, Qiu, Dongru, Wang, Q, Wen, L J., Albert, J B., Anton, G, Arnquist, Isaac J., Badhrees, I, Barbeau, P S., Beck, D, Belov, V, Bourque, F, Brodsky, J, Brown, E, Brunner, T, Burenkov, A, Cao, G F., Cao, Liang, Chambers, C, Charlebois, S A., Chiu, M, Cleveland, B, Coon, M, Craycraft, A, Cree, W, Cote, M, Daniels, T, Daugherty, S J., Daughhetee, J, Delaquis, S, Der Mesrobian-Kabakian, A, Didberidze, T, Dilling, Jens, Ding, Y Y., Dolinski, M J., Dragone, A, Fairbank, W, Farine, J, Feyzbakhsh, S, Fontaine, R, Fudenberg, D, Giacomini, G, Gornea, R, Hansen, E V., Harris, D, Hasan, M, Heffner, Mike, Hoppe, Eric W., House, A, Hufschmidt, P, Hughes, M, Hoessl, J, Ito, Y, Iverson, A, Jiang, X S., Johnston, S, Karelin, A, Kaufman, L J., Koffas, T, Kravitz, S, Krucken, R, Kuchenkov, A, Kumar, K S., Lan, Y, Leonard, D S., Li, S, Li, Z, Licciardi, C, Lin, Y H., Maclellan, R, Michel, T, Mong, B, Moore, D, Murray, K, Newby, Robert J., Ning, Z, Njoya, O, Nolet, F, Odgers, K, Oriunno, M, Orrell, John L., Ostrovskiy, I, Overman, Cory T., Ortega, Gabriel SU, Parent, S, Piepke, A, Pratte, J-F, Radeka, V, Raguzin, E, Rao, T, Rescia, S, Retiere, F, Robinson, A, Rossignol, T, Rowson, P C., Roy, N, Saldanha, Richard N., Sangiorgio, Samuele, Schmidt, S, Schneider, J, Sinclair, D, Skarpaas, K, Soma, A K., St-Hilaire, G, Stekhanov, V, Stiegler, T, Sun, X L., Tarka, M, Todd, J, Tolba, T, Tsang, Hei Man, Tsang, T, Vachon, F, Veeraraghavan, V, Visser, G, Vuilleumier, Laurent, Wagenpfeil, M, Weber, M, Wei, W, Wichoski, U, Wrede, G, Wu, S X., Wu, W H., Yang, L, Yen, Y R., Zeldovich, O Y., Zhang, X, Zhao, Jiali, Zhou, Yuquan, & Ziegler, T. Characterization of an Ionization Readout Tile for nEXO. United States. doi:10.1088/1748-0221/13/01/P01006.
Jewell, M J., Schubert, A, Cen, W R., Dalmasson, J, Devoe, R, Fabris, L, Gratta, G, Jamil, A, Li, G, Odian, A, Patel, M, Pocar, A, Qiu, Dongru, Wang, Q, Wen, L J., Albert, J B., Anton, G, Arnquist, Isaac J., Badhrees, I, Barbeau, P S., Beck, D, Belov, V, Bourque, F, Brodsky, J, Brown, E, Brunner, T, Burenkov, A, Cao, G F., Cao, Liang, Chambers, C, Charlebois, S A., Chiu, M, Cleveland, B, Coon, M, Craycraft, A, Cree, W, Cote, M, Daniels, T, Daugherty, S J., Daughhetee, J, Delaquis, S, Der Mesrobian-Kabakian, A, Didberidze, T, Dilling, Jens, Ding, Y Y., Dolinski, M J., Dragone, A, Fairbank, W, Farine, J, Feyzbakhsh, S, Fontaine, R, Fudenberg, D, Giacomini, G, Gornea, R, Hansen, E V., Harris, D, Hasan, M, Heffner, Mike, Hoppe, Eric W., House, A, Hufschmidt, P, Hughes, M, Hoessl, J, Ito, Y, Iverson, A, Jiang, X S., Johnston, S, Karelin, A, Kaufman, L J., Koffas, T, Kravitz, S, Krucken, R, Kuchenkov, A, Kumar, K S., Lan, Y, Leonard, D S., Li, S, Li, Z, Licciardi, C, Lin, Y H., Maclellan, R, Michel, T, Mong, B, Moore, D, Murray, K, Newby, Robert J., Ning, Z, Njoya, O, Nolet, F, Odgers, K, Oriunno, M, Orrell, John L., Ostrovskiy, I, Overman, Cory T., Ortega, Gabriel SU, Parent, S, Piepke, A, Pratte, J-F, Radeka, V, Raguzin, E, Rao, T, Rescia, S, Retiere, F, Robinson, A, Rossignol, T, Rowson, P C., Roy, N, Saldanha, Richard N., Sangiorgio, Samuele, Schmidt, S, Schneider, J, Sinclair, D, Skarpaas, K, Soma, A K., St-Hilaire, G, Stekhanov, V, Stiegler, T, Sun, X L., Tarka, M, Todd, J, Tolba, T, Tsang, Hei Man, Tsang, T, Vachon, F, Veeraraghavan, V, Visser, G, Vuilleumier, Laurent, Wagenpfeil, M, Weber, M, Wei, W, Wichoski, U, Wrede, G, Wu, S X., Wu, W H., Yang, L, Yen, Y R., Zeldovich, O Y., Zhang, X, Zhao, Jiali, Zhou, Yuquan, and Ziegler, T. Wed . "Characterization of an Ionization Readout Tile for nEXO". United States. doi:10.1088/1748-0221/13/01/P01006.
@article{osti_1510270,
title = {Characterization of an Ionization Readout Tile for nEXO},
author = {Jewell, M J. and Schubert, A and Cen, W R. and Dalmasson, J and Devoe, R and Fabris, L and Gratta, G and Jamil, A and Li, G and Odian, A and Patel, M and Pocar, A and Qiu, Dongru and Wang, Q and Wen, L J. and Albert, J B. and Anton, G and Arnquist, Isaac J. and Badhrees, I and Barbeau, P S. and Beck, D and Belov, V and Bourque, F and Brodsky, J and Brown, E and Brunner, T and Burenkov, A and Cao, G F. and Cao, Liang and Chambers, C and Charlebois, S A. and Chiu, M and Cleveland, B and Coon, M and Craycraft, A and Cree, W and Cote, M and Daniels, T and Daugherty, S J. and Daughhetee, J and Delaquis, S and Der Mesrobian-Kabakian, A and Didberidze, T and Dilling, Jens and Ding, Y Y. and Dolinski, M J. and Dragone, A and Fairbank, W and Farine, J and Feyzbakhsh, S and Fontaine, R and Fudenberg, D and Giacomini, G and Gornea, R and Hansen, E V. and Harris, D and Hasan, M and Heffner, Mike and Hoppe, Eric W. and House, A and Hufschmidt, P and Hughes, M and Hoessl, J and Ito, Y and Iverson, A and Jiang, X S. and Johnston, S and Karelin, A and Kaufman, L J. and Koffas, T and Kravitz, S and Krucken, R and Kuchenkov, A and Kumar, K S. and Lan, Y and Leonard, D S. and Li, S and Li, Z and Licciardi, C and Lin, Y H. and Maclellan, R and Michel, T and Mong, B and Moore, D and Murray, K and Newby, Robert J. and Ning, Z and Njoya, O and Nolet, F and Odgers, K and Oriunno, M and Orrell, John L. and Ostrovskiy, I and Overman, Cory T. and Ortega, Gabriel SU and Parent, S and Piepke, A and Pratte, J-F and Radeka, V and Raguzin, E and Rao, T and Rescia, S and Retiere, F and Robinson, A and Rossignol, T and Rowson, P C. and Roy, N and Saldanha, Richard N. and Sangiorgio, Samuele and Schmidt, S and Schneider, J and Sinclair, D and Skarpaas, K and Soma, A K. and St-Hilaire, G and Stekhanov, V and Stiegler, T and Sun, X L. and Tarka, M and Todd, J and Tolba, T and Tsang, Hei Man and Tsang, T and Vachon, F and Veeraraghavan, V and Visser, G and Vuilleumier, Laurent and Wagenpfeil, M and Weber, M and Wei, W and Wichoski, U and Wrede, G and Wu, S X. and Wu, W H. and Yang, L and Yen, Y R. and Zeldovich, O Y. and Zhang, X and Zhao, Jiali and Zhou, Yuquan and Ziegler, T},
abstractNote = {Anewdesign for the anode of a time projection chamber, consisting of a charge-detecting "tile", is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3 mm wide, on a 10 cm 10 cm fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so a Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a 207Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic field of the detector. An energy resolution E=5.5% is observed at 570 keV, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936 V/cm.},
doi = {10.1088/1748-0221/13/01/P01006},
journal = {Journal of Instrumentation},
number = 1,
volume = 13,
place = {United States},
year = {2018},
month = {1}
}