skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multiplexed CRISPR-Cas9-Based Genome Editing of Rhodosporidium toruloides

Abstract

Microbial production of biofuels and bioproducts offers a sustainable and economic alternative to petroleum-based fuels and chemicals. The basidiomycete yeast Rhodosporidium toruloides is a promising platform organism for generating bioproducts due to its ability to consume a broad spectrum of carbon sources (including those derived from lignocellulosic biomass) and to naturally accumulate high levels of lipids and carotenoids, two biosynthetic pathways that can be leveraged to produce a wide range of bioproducts. While R. toruloides has great potential, it has a more limited set of tools for genetic engineering relative to more advanced yeast platform organisms such as Yarrowia lipolytica and Saccharomyces cerevisiae. Significant advancements in the past few years have bolstered R. toruloides’ engineering capacity. Here we expand this capacity by demonstrating the first use of CRISPR-Cas9-based gene disruption in R. toruloides. Transforming a Cas9 expression cassette harboring nourseothricin resistance and selecting transformants on this antibiotic resulted in strains of R. toruloides exhibiting successful targeted disruption of the native URA3 gene. While editing efficiencies were initially low (0.002%), optimization of the cassette increased efficiencies 364-fold (to 0.6%). Applying these optimized design conditions enabled disruption of another native gene involved in carotenoid biosynthesis, CAR2, with much greater success; editing efficienciesmore » of CAR2 deletion reached roughly 50%. Finally, we demonstrated efficient multiplexed genome editing by disrupting both CAR2 and URA3 in a single transformation. Altogether, our results provide a framework for applying CRISPR-Cas9 to R. toruloides that will facilitate rapid and high-throughput genome engineering in this industrially relevant organism.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [1];  [5];  [6]
  1. Joint BioEnergy Inst., Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  2. Toyota Motor Corp., Aichi (Japan); Energy Biosciences Inst., Berkeley, CA (United States)
  3. Energy Biosciences Inst., Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  4. Joint BioEnergy Inst., Emeryville, CA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  5. Energy Biosciences Inst., Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  6. Carnegie Mellon Univ., Pittsburgh, PA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1508520
Report Number(s):
PNNL-SA-142513
Journal ID: ISSN 2379-5042
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
mSphere
Additional Journal Information:
Journal Volume: 4; Journal Issue: 2; Journal ID: ISSN 2379-5042
Publisher:
American Society for Microbiology
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; CAR2; CRISPR-Cas9; Rhodosporidium toruloides; URA3; genome engineering; multiplexed; tRNA

Citation Formats

Otoupal, Peter B., Ito, Masakazu, Arkin, Adam P., Magnuson, Jon K., Gladden, John M., Skerker, Jeffrey M., and Mitchell, Aaron P. Multiplexed CRISPR-Cas9-Based Genome Editing of Rhodosporidium toruloides. United States: N. p., 2019. Web. doi:10.1128/mSphere.00099-19.
Otoupal, Peter B., Ito, Masakazu, Arkin, Adam P., Magnuson, Jon K., Gladden, John M., Skerker, Jeffrey M., & Mitchell, Aaron P. Multiplexed CRISPR-Cas9-Based Genome Editing of Rhodosporidium toruloides. United States. doi:10.1128/mSphere.00099-19.
Otoupal, Peter B., Ito, Masakazu, Arkin, Adam P., Magnuson, Jon K., Gladden, John M., Skerker, Jeffrey M., and Mitchell, Aaron P. Wed . "Multiplexed CRISPR-Cas9-Based Genome Editing of Rhodosporidium toruloides". United States. doi:10.1128/mSphere.00099-19. https://www.osti.gov/servlets/purl/1508520.
@article{osti_1508520,
title = {Multiplexed CRISPR-Cas9-Based Genome Editing of Rhodosporidium toruloides},
author = {Otoupal, Peter B. and Ito, Masakazu and Arkin, Adam P. and Magnuson, Jon K. and Gladden, John M. and Skerker, Jeffrey M. and Mitchell, Aaron P.},
abstractNote = {Microbial production of biofuels and bioproducts offers a sustainable and economic alternative to petroleum-based fuels and chemicals. The basidiomycete yeast Rhodosporidium toruloides is a promising platform organism for generating bioproducts due to its ability to consume a broad spectrum of carbon sources (including those derived from lignocellulosic biomass) and to naturally accumulate high levels of lipids and carotenoids, two biosynthetic pathways that can be leveraged to produce a wide range of bioproducts. While R. toruloides has great potential, it has a more limited set of tools for genetic engineering relative to more advanced yeast platform organisms such as Yarrowia lipolytica and Saccharomyces cerevisiae. Significant advancements in the past few years have bolstered R. toruloides’ engineering capacity. Here we expand this capacity by demonstrating the first use of CRISPR-Cas9-based gene disruption in R. toruloides. Transforming a Cas9 expression cassette harboring nourseothricin resistance and selecting transformants on this antibiotic resulted in strains of R. toruloides exhibiting successful targeted disruption of the native URA3 gene. While editing efficiencies were initially low (0.002%), optimization of the cassette increased efficiencies 364-fold (to 0.6%). Applying these optimized design conditions enabled disruption of another native gene involved in carotenoid biosynthesis, CAR2, with much greater success; editing efficiencies of CAR2 deletion reached roughly 50%. Finally, we demonstrated efficient multiplexed genome editing by disrupting both CAR2 and URA3 in a single transformation. Altogether, our results provide a framework for applying CRISPR-Cas9 to R. toruloides that will facilitate rapid and high-throughput genome engineering in this industrially relevant organism.},
doi = {10.1128/mSphere.00099-19},
journal = {mSphere},
issn = {2379-5042},
number = 2,
volume = 4,
place = {United States},
year = {2019},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

CRISPR-Cas9, the new kid on the block of fungal molecular biology
journal, November 2016


Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression
journal, February 2013


Genome sequence of the oleaginous yeast Rhodotorula toruloides strain CGMCC 2.1609
journal, September 2017


Development of a sufficient and effective procedure for transformation of an oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16
journal, July 2016


Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger
journal, August 2018


Conformational control of DNA target cleavage by CRISPR–Cas9
journal, October 2015

  • Sternberg, Samuel H.; LaFrance, Benjamin; Kaplan, Matias
  • Nature, Vol. 527, Issue 7576
  • DOI: 10.1038/nature15544

Efficient CRISPR-Cas9-Mediated Generation of Knockin Human Pluripotent Stem Cells Lacking Undesired Mutations at the Targeted Locus
journal, May 2015


Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high-density fermentation
journal, September 2016

  • Zhang, Shuyan; Ito, Masakazu; Skerker, Jeffrey M.
  • Applied Microbiology and Biotechnology, Vol. 100, Issue 21
  • DOI: 10.1007/s00253-016-7815-y

Four Inducible Promoters for Controlled Gene Expression in the Oleaginous Yeast Rhodotorula toruloides
journal, October 2016


Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides
journal, February 2014


Developing a set of strong intronic promoters for robust metabolic engineering in oleaginous Rhodotorula (Rhodosporidium) yeast species
journal, November 2016


Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides
journal, March 2018

  • Coradetti, Samuel T.; Pinel, Dominic; Geiselman, Gina M.
  • eLife, Vol. 7
  • DOI: 10.7554/eLife.32110

Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli
journal, June 2018

  • Nødvig, Christina S.; Hoof, Jakob B.; Kogle, Martin E.
  • Fungal Genetics and Biology, Vol. 115
  • DOI: 10.1016/j.fgb.2018.01.004

Combining evolutionary and metabolic engineering in Rhodosporidium toruloides for lipid production with non-detoxified wheat straw hydrolysates
journal, February 2018

  • Díaz, Teresa; Fillet, Sandy; Campoy, Sonia
  • Applied Microbiology and Biotechnology, Vol. 102, Issue 7
  • DOI: 10.1007/s00253-018-8810-2

CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art
journal, September 2017

  • Shi, Tian-Qiong; Liu, Guan-Nan; Ji, Rong-Yu
  • Applied Microbiology and Biotechnology, Vol. 101, Issue 20
  • DOI: 10.1007/s00253-017-8497-9

Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression
journal, June 2016

  • Radzisheuskaya, Aliaksandra; Shlyueva, Daria; Müller, Iris
  • Nucleic Acids Research, Vol. 44, Issue 18
  • DOI: 10.1093/nar/gkw583

A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae
journal, November 2016

  • Reider Apel, Amanda; d'Espaux, Leo; Wehrs, Maren
  • Nucleic Acids Research, Vol. 45, Issue 1
  • DOI: 10.1093/nar/gkw1023

The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications
journal, March 2018


CRISPR-Cas9 mediated gene deletions in lager yeast Saccharomyces pastorianus
journal, December 2017

  • Gorter de Vries, Arthur R.; de Groot, Philip A.; van den Broek, Marcel
  • Microbial Cell Factories, Vol. 16, Issue 1
  • DOI: 10.1186/s12934-017-0835-1

Development and Applications of CRISPR-Cas9 for Genome Engineering
journal, June 2014


Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array
journal, December 2016

  • Zetsche, Bernd; Heidenreich, Matthias; Mohanraju, Prarthana
  • Nature Biotechnology, Vol. 35, Issue 1
  • DOI: 10.1038/nbt.3737

RNA-programmed genome editing in human cells
journal, January 2013

  • Jinek, Martin; East, Alexandra; Cheng, Aaron
  • eLife, Vol. 2, Article No. e00471
  • DOI: 10.7554/eLife.00471

DNA targeting specificity of RNA-guided Cas9 nucleases
journal, July 2013

  • Hsu, Patrick D.; Scott, David A.; Weinstein, Joshua A.
  • Nature Biotechnology, Vol. 31, Issue 9, p. 827-832
  • DOI: 10.1038/nbt.2647

Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR–Cas9-Mediated Genome Editing in Yarrowia lipolytica
journal, January 2016

  • Schwartz, Cory M.; Hussain, Murtaza Shabbir; Blenner, Mark
  • ACS Synthetic Biology, Vol. 5, Issue 4
  • DOI: 10.1021/acssynbio.5b00162

T7 Polymerase Expression of Guide RNAs in vivo Allows Exportable CRISPR-Cas9 Editing in Multiple Yeast Hosts
journal, March 2018


CRISPR system in filamentous fungi: Current achievements and future directions
journal, September 2017


Selection of chromosomal DNA libraries using a multiplex CRISPR system
journal, August 2014

  • Ryan, Owen W.; Skerker, Jeffrey M.; Maurer, Matthew J.
  • eLife, Vol. 3
  • DOI: 10.7554/eLife.03703

Gene targeting in filamentous fungi: the benefits of impaired repair
journal, February 2007


Development of a plasmid free CRISPR-Cas9 system for the genetic modification of Mucor circinelloides
journal, December 2017


Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system
journal, March 2015

  • Xie, Kabin; Minkenberg, Bastian; Yang, Yinong
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 11
  • DOI: 10.1073/pnas.1420294112

Exploitation of genus Rhodosporidium for microbial lipid production
journal, February 2017


Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts
journal, October 2017


A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity
journal, June 2012


Creation of targeted inversion mutations in plants using an RNA-guided endonuclease
journal, February 2017


Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
journal, March 2013

  • DiCarlo, James E.; Norville, Julie E.; Mali, Prashant
  • Nucleic Acids Research, Vol. 41, Issue 7, p. 4336-4343
  • DOI: 10.1093/nar/gkt135

sgRNA Scorer 2.0: A Species-Independent Model To Predict CRISPR/Cas9 Activity
journal, February 2017


CAR gene cluster and transcript levels of carotenogenic genes in Rhodotorula mucilaginosa
journal, January 2018

  • Landolfo, Sara; Ianiri, Giuseppe; Camiolo, Salvatore
  • Microbiology, Vol. 164, Issue 1
  • DOI: 10.1099/mic.0.000588

Concomitant Production of Lipids and Carotenoids in Rhodosporidium toruloides under Osmotic Stress Using Response Surface Methodology
journal, October 2016


Synthetic Biology Expands the Industrial Potential of Yarrowia lipolytica
journal, October 2018


Developing a flippase-mediated maker recycling protocol for the oleaginous yeast Rhodosporidium toruloides
journal, March 2018


Genome engineering using the CRISPR-Cas9 system
journal, October 2013


Increasing expression level and copy number of a Yarrowia lipolytica plasmid through regulated centromere function
journal, September 2014


An efficient tool for metabolic pathway construction and gene integration for Aspergillus niger
journal, December 2017


Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides
journal, June 2012

  • Liu, Yanbin; Koh, Chong Mei John; Sun, Longhua
  • Applied Microbiology and Biotechnology, Vol. 97, Issue 2, p. 719-729
  • DOI: 10.1007/s00253-012-4223-9

CRISPR Crops: Plant Genome Editing Toward Disease Resistance
journal, August 2018


Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals
journal, November 2017


One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering
journal, May 2013


Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production
journal, April 2018


Multiplex Genome Engineering Using CRISPR/Cas Systems
journal, January 2013


GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
journal, December 2014

  • Tsai, Shengdar Q.; Zheng, Zongli; Nguyen, Nhu T.
  • Nature Biotechnology, Vol. 33, Issue 2
  • DOI: 10.1038/nbt.3117

Engineering microbial fatty acid metabolism for biofuels and biochemicals
journal, April 2018


Fast and efficient genetic transformation of oleaginous yeast Rhodosporidium toruloides by using electroporation
journal, March 2017


CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae : CRISPR/Cpf1-mediated genome editing of
journal, November 2017

  • Verwaal, René; Buiting-Wiessenhaan, Nathalie; Dalhuijsen, Sacha
  • Yeast, Vol. 35, Issue 2
  • DOI: 10.1002/yea.3278

High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture
journal, August 2007


Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides
journal, October 2009


CRISPR, the disruptor
journal, June 2015


Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production
journal, January 2014

  • Blazeck, John; Hill, Andrew; Liu, Leqian
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4131

Effects of selected ionic liquids on lipid production by the oleaginous yeast Rhodosporidium toruloides
journal, February 2013


Trends in Oil Production from Oleaginous Yeast Using Biomass: Biotechnological Potential and Constraints
journal, July 2018

  • Chaturvedi, S.; Bhattacharya, A.; Khare, S. K.
  • Applied Biochemistry and Microbiology, Vol. 54, Issue 4
  • DOI: 10.1134/S000368381804004X

    Works referencing / citing this record:

    A toolset of constitutive promoters for metabolic engineering of Rhodosporidium toruloides
    journal, June 2019

    • Nora, Luísa Czamanski; Wehrs, Maren; Kim, Joonhoon
    • Microbial Cell Factories, Vol. 18, Issue 1
    • DOI: 10.1186/s12934-019-1167-0

    A toolset of constitutive promoters for metabolic engineering of Rhodosporidium toruloides
    journal, June 2019

    • Nora, Luísa Czamanski; Wehrs, Maren; Kim, Joonhoon
    • Microbial Cell Factories, Vol. 18, Issue 1
    • DOI: 10.1186/s12934-019-1167-0