skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks

Abstract

The low volumetric density of hydrogen is a critical limitation to its use as a transportation fuel. Filling a fuel tank with nanoporous materials, such as metal–organic frameworks (MOFs), could greatly improve the deliverable capacity of these tanks if appropriate materials could be found. Yet, since MOFs can be made from many combinations of metal nodes, organic linkers, and functional groups, the design space of possible MOFs is enormous. Experimental characterization of thousands of MOFs is infeasible, and even conventional molecular simulations can be prohibitively expensive for large databases. In this work, we have developed a data-driven approach to accelerate materials screening and learn structure–property relationships. We report new descriptors for gas adsorption in MOFs derived from the energetics of MOF–guest interactions. Using the bins of an energy histogram as features, we trained a sparse regression model to predict gas uptake in multiple MOF databases to an accuracy within 3 g L -1. The interpretable model parameters indicate that a somewhat weak attraction between hydrogen and the framework is ideal for cryogenic storage and release. Our machine learning method is more than three orders of magnitude faster than conventional molecular simulations, enabling rapid exploration of large numbers of MOFs. Asmore » a case study, we applied the method to screen a database of more than 50 000 experimental MOF structures. We experimentally validated one of the top candidates identified from the accelerated screening, MFU-4l. This material demonstrated a hydrogen deliverable capacity of 47 g L -1 (54 g L -1 simulated) when operating at storage conditions of 77 K, 100 bar and delivery at 160 K, 5 bar.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Northwestern Univ., Evanston, IL (United States)
  2. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)
Publication Date:
Research Org.:
Univ. of Minnesota, Minneapolis, MN (United States). Nanoporous Materials Genome Center
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1508085
Alternate Identifier(s):
OSTI ID: 1481431
Grant/Contract Number:  
SC0008688; FG02-17ER16362
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Molecular Systems Design & Engineering
Additional Journal Information:
Journal Volume: 4; Journal Issue: 1; Journal ID: ISSN 2058-9689
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Bucior, Benjamin J., Bobbitt, N. Scott, Islamoglu, Timur, Goswami, Subhadip, Gopalan, Arun, Yildirim, Taner, Farha, Omar K., Bagheri, Neda, and Snurr, Randall Q. Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks. United States: N. p., 2018. Web. doi:10.1039/C8ME00050F.
Bucior, Benjamin J., Bobbitt, N. Scott, Islamoglu, Timur, Goswami, Subhadip, Gopalan, Arun, Yildirim, Taner, Farha, Omar K., Bagheri, Neda, & Snurr, Randall Q. Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks. United States. doi:10.1039/C8ME00050F.
Bucior, Benjamin J., Bobbitt, N. Scott, Islamoglu, Timur, Goswami, Subhadip, Gopalan, Arun, Yildirim, Taner, Farha, Omar K., Bagheri, Neda, and Snurr, Randall Q. Thu . "Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks". United States. doi:10.1039/C8ME00050F. https://www.osti.gov/servlets/purl/1508085.
@article{osti_1508085,
title = {Energy-based descriptors to rapidly predict hydrogen storage in metal–organic frameworks},
author = {Bucior, Benjamin J. and Bobbitt, N. Scott and Islamoglu, Timur and Goswami, Subhadip and Gopalan, Arun and Yildirim, Taner and Farha, Omar K. and Bagheri, Neda and Snurr, Randall Q.},
abstractNote = {The low volumetric density of hydrogen is a critical limitation to its use as a transportation fuel. Filling a fuel tank with nanoporous materials, such as metal–organic frameworks (MOFs), could greatly improve the deliverable capacity of these tanks if appropriate materials could be found. Yet, since MOFs can be made from many combinations of metal nodes, organic linkers, and functional groups, the design space of possible MOFs is enormous. Experimental characterization of thousands of MOFs is infeasible, and even conventional molecular simulations can be prohibitively expensive for large databases. In this work, we have developed a data-driven approach to accelerate materials screening and learn structure–property relationships. We report new descriptors for gas adsorption in MOFs derived from the energetics of MOF–guest interactions. Using the bins of an energy histogram as features, we trained a sparse regression model to predict gas uptake in multiple MOF databases to an accuracy within 3 g L-1. The interpretable model parameters indicate that a somewhat weak attraction between hydrogen and the framework is ideal for cryogenic storage and release. Our machine learning method is more than three orders of magnitude faster than conventional molecular simulations, enabling rapid exploration of large numbers of MOFs. As a case study, we applied the method to screen a database of more than 50 000 experimental MOF structures. We experimentally validated one of the top candidates identified from the accelerated screening, MFU-4l. This material demonstrated a hydrogen deliverable capacity of 47 g L-1 (54 g L-1 simulated) when operating at storage conditions of 77 K, 100 bar and delivery at 160 K, 5 bar.},
doi = {10.1039/C8ME00050F},
journal = {Molecular Systems Design & Engineering},
issn = {2058-9689},
number = 1,
volume = 4,
place = {United States},
year = {2018},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hydrogen Storage in Metal–Organic Frameworks
journal, September 2011

  • Suh, Myunghyun Paik; Park, Hye Jeong; Prasad, Thazhe Kootteri
  • Chemical Reviews, Vol. 112, Issue 2, p. 782-835
  • DOI: 10.1021/cr200274s

What Are the Best Materials To Separate a Xenon/Krypton Mixture?
journal, June 2015


Elucidating Gating Effects for Hydrogen Sorption in MFU-4-Type Triazolate-Based Metal-Organic Frameworks Featuring Different Pore Sizes
journal, January 2011

  • Denysenko, Dmytro; Grzywa, Maciej; Tonigold, Markus
  • Chemistry - A European Journal, Vol. 17, Issue 6
  • DOI: 10.1002/chem.201001872

Hydrogen Physisorption in Metal-Organic Porous Crystals
journal, March 2005


High-Throughput Screening of Metal–Organic Frameworks for CO 2 Separation
journal, March 2012

  • Han, Sangil; Huang, Yougui; Watanabe, Taku
  • ACS Combinatorial Science, Vol. 14, Issue 4
  • DOI: 10.1021/co3000192

UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992

  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

The materials genome in action: identifying the performance limits for methane storage
journal, January 2015

  • Simon, Cory M.; Kim, Jihan; Gomez-Gualdron, Diego A.
  • Energy & Environmental Science, Vol. 8, Issue 4
  • DOI: 10.1039/C4EE03515A

Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO 2 Capture
journal, August 2014

  • Fernandez, Michael; Boyd, Peter G.; Daff, Thomas D.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 17
  • DOI: 10.1021/jz501331m

Hydrogen storage: Materials, methods and perspectives
journal, October 2015

  • Niaz, Saba; Manzoor, Taniya; Pandith, Altaf Hussain
  • Renewable and Sustainable Energy Reviews, Vol. 50
  • DOI: 10.1016/j.rser.2015.05.011

High-Throughput Screening of Metal–Organic Frameworks for Hydrogen Storage at Cryogenic Temperature
journal, November 2016

  • Bobbitt, N. Scott; Chen, Jiayi; Snurr, Randall Q.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 48
  • DOI: 10.1021/acs.jpcc.6b08729

Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future
journal, March 2017


Hydrogen adsorption in different carbon nanostructures
journal, August 2005


Large-Scale Quantitative Structure–Property Relationship (QSPR) Analysis of Methane Storage in Metal–Organic Frameworks
journal, April 2013

  • Fernandez, Michael; Woo, Tom K.; Wilmer, Christopher E.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 15
  • DOI: 10.1021/jp4006422

Exploring the Limits of Methane Storage and Delivery in Nanoporous Materials
journal, March 2014

  • Gómez-Gualdrón, Diego A.; Wilmer, Christopher E.; Farha, Omar K.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 13
  • DOI: 10.1021/jp502359q

Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal–Organic Frameworks
journal, April 2017

  • Gómez-Gualdrón, Diego A.; Wang, Timothy C.; García-Holley, Paula
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 39
  • DOI: 10.1021/acsami.7b01190

Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals
journal, October 2014

  • Chung, Yongchul G.; Camp, Jeffrey; Haranczyk, Maciej
  • Chemistry of Materials, Vol. 26, Issue 21
  • DOI: 10.1021/cm502594j

Textural properties of a large collection of computationally constructed MOFs and zeolites
journal, March 2014


Metal–Organic Frameworks (MOFs)
journal, January 2014

  • Zhou, Hong-Cai “Joe”; Kitagawa, Susumu
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS90059F

Reticular synthesis and the design of new materials
journal, June 2003

  • Yaghi, Omar M.; O'Keeffe, Michael; Ockwig, Nathan W.
  • Nature, Vol. 423, Issue 6941, p. 705-714
  • DOI: 10.1038/nature01650

The high-throughput highway to computational materials design
journal, February 2013

  • Curtarolo, Stefano; Hart, Gus L. W.; Nardelli, Marco Buongiorno
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3568

The current status of hydrogen storage in metal–organic frameworks—updated
journal, January 2011

  • Sculley, Julian; Yuan, Daqiang; Zhou, Hong-Cai
  • Energy & Environmental Science, Vol. 4, Issue 8
  • DOI: 10.1039/c1ee01240a

Introduction to Metal–Organic Frameworks
journal, September 2011

  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

Accurate Characterization of the Pore Volume in Microporous Crystalline Materials
journal, July 2017


Computational Screening of Functionalized UiO-66 Materials for Selective Contaminant Removal from Air
journal, September 2017

  • Demir, Hakan; Walton, Krista S.; Sholl, David S.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 37
  • DOI: 10.1021/acs.jpcc.7b07079

Geometrical Properties Can Predict CO 2 and N 2 Adsorption Performance of Metal–Organic Frameworks (MOFs) at Low Pressure
journal, April 2016


Ridge Regression: Biased Estimation for Nonorthogonal Problems
journal, February 1970


Benchmark Study of Hydrogen Storage in Metal–Organic Frameworks under Temperature and Pressure Swing Conditions
journal, February 2018


Selective gas adsorption and separation in metal–organic frameworks
journal, January 2009

  • Li, Jian-Rong; Kuppler, Ryan J.; Zhou, Hong-Cai
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1477-1504
  • DOI: 10.1039/b802426j

Simulation and modelling of MOFs for hydrogen storage
journal, January 2015


Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials
journal, February 2012


Balancing gravimetric and volumetric hydrogen density in MOFs
journal, January 2017

  • Ahmed, Alauddin; Liu, Yiyang; Purewal, Justin
  • Energy & Environmental Science, Vol. 10, Issue 11
  • DOI: 10.1039/C7EE02477K

Methane Storage in Metal–Organic Frameworks: Current Records, Surprise Findings, and Challenges
journal, July 2013

  • Peng, Yang; Krungleviciute, Vaiva; Eryazici, Ibrahim
  • Journal of the American Chemical Society, Vol. 135, Issue 32, p. 11887-11894
  • DOI: 10.1021/ja4045289

Optimizing nanoporous materials for gas storage
journal, January 2014

  • Simon, Cory M.; Kim, Jihan; Lin, Li-Chiang
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 12
  • DOI: 10.1039/c3cp55039g

RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials
journal, February 2015


Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications
journal, February 2017


High-throughput computational screening of metal–organic frameworks
journal, January 2014

  • Colón, Yamil J.; Snurr, Randall Q.
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00070F

Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage
journal, January 2016

  • Gómez-Gualdrón, Diego A.; Colón, Yamil J.; Zhang, Xu
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE02104B

Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks
journal, September 2011

  • Cohen, Seth M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 970-1000
  • DOI: 10.1021/cr200179u

Towards accurate porosity descriptors based on guest-host interactions
journal, May 2016


High-Throughput Screening of Porous Crystalline Materials for Hydrogen Storage Capacity near Room Temperature
journal, March 2014

  • Colón, Yamil J.; Fairen-Jimenez, David; Wilmer, Christopher E.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 10
  • DOI: 10.1021/jp4122326

Theoretical Limits of Hydrogen Storage in Metal–Organic Frameworks: Opportunities and Trade-Offs
journal, August 2013

  • Goldsmith, Jacob; Wong-Foy, Antek G.; Cafarella, Michael J.
  • Chemistry of Materials, Vol. 25, Issue 16
  • DOI: 10.1021/cm401978e

High-throughput computational screening of nanoporous adsorbents for CO 2 capture from natural gas
journal, January 2016

  • Braun, Efrem; Zurhelle, Alexander F.; Thijssen, Wouter
  • Molecular Systems Design & Engineering, Vol. 1, Issue 2
  • DOI: 10.1039/C6ME00043F

In silico Design of Porous Polymer Networks: High-Throughput Screening for Methane Storage Materials
journal, March 2014

  • Martin, Richard L.; Simon, Cory M.; Smit, Berend
  • Journal of the American Chemical Society, Vol. 136, Issue 13
  • DOI: 10.1021/ja4123939

Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage
journal, March 2017


Hydrogen and Methane Adsorption in Metal−Organic Frameworks:  A High-Pressure Volumetric Study
journal, November 2007

  • Zhou, Wei; Wu, Hui; Hartman, Michael R.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 44
  • DOI: 10.1021/jp074889i

y-Randomization and Its Variants in QSPR/QSAR
journal, September 2007

  • Rücker, Christoph; Rücker, Gerta; Meringer, Markus
  • Journal of Chemical Information and Modeling, Vol. 47, Issue 6
  • DOI: 10.1021/ci700157b

Materials for Hydrogen Storage: Past, Present, and Future
journal, January 2011

  • Jena, Puru
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 3
  • DOI: 10.1021/jz1015372

High-throughput screening of small-molecule adsorption in MOF
journal, January 2013

  • Canepa, Pieremanuele; Arter, Calvin A.; Conwill, Eliot M.
  • Journal of Materials Chemistry A, Vol. 1, Issue 43
  • DOI: 10.1039/c3ta12395b

In silico discovery of metal-organic frameworks for precombustion CO 2 capture using a genetic algorithm
journal, October 2016

  • Chung, Yongchul G.; Gómez-Gualdrón, Diego A.; Li, Peng
  • Science Advances, Vol. 2, Issue 10
  • DOI: 10.1126/sciadv.1600909

Hydrogen Storage in Metal-Organic Frameworks: A Review
journal, May 2014


Large-scale screening of hypothetical metal–organic frameworks
journal, November 2011

  • Wilmer, Christopher E.; Leaf, Michael; Lee, Chang Yeon
  • Nature Chemistry, Vol. 4, Issue 2, p. 83-89
  • DOI: 10.1038/nchem.1192

Regularization Paths for Generalized Linear Models via Coordinate Descent
journal, January 2010

  • Friedman, Jerome; Hastie, Trevor; Tibshirani, Robert
  • Journal of Statistical Software, Vol. 33, Issue 1
  • DOI: 10.18637/jss.v033.i01

Experimental and Theoretical Studies of Gas Adsorption in Cu 3 (BTC) 2 :  An Effective Activation Procedure
journal, July 2007

  • Liu, Jinchen; Culp, Jeffrey T.; Natesakhawat, Sittichai
  • The Journal of Physical Chemistry C, Vol. 111, Issue 26
  • DOI: 10.1021/jp071449i

Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs)
journal, September 2017


The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes
journal, September 1998

  • Darkrim, Farida; Levesque, Dominique
  • The Journal of Chemical Physics, Vol. 109, Issue 12
  • DOI: 10.1063/1.477109

Computational Identification and Experimental Evaluation of Metal–Organic Frameworks for Xylene Enrichment
journal, May 2016

  • Gee, Jason A.; Zhang, Ke; Bhattacharyya, Souryadeep
  • The Journal of Physical Chemistry C, Vol. 120, Issue 22
  • DOI: 10.1021/acs.jpcc.6b03349

Hydrogen Storage in Metal-Organic Frameworks
journal, October 2012

  • Sun, Yubiao; Wang, Li; Amer, Wael A.
  • Journal of Inorganic and Organometallic Polymers and Materials, Vol. 23, Issue 2
  • DOI: 10.1007/s10904-012-9779-4

Topologically Guided, Automated Construction of Metal–Organic Frameworks and Their Evaluation for Energy-Related Applications
journal, September 2017

  • Colón, Yamil J.; Gómez-Gualdrón, Diego A.; Snurr, Randall Q.
  • Crystal Growth & Design, Vol. 17, Issue 11
  • DOI: 10.1021/acs.cgd.7b00848

External Validation and Prediction Employing the Predictive Squared Correlation Coefficient — Test Set Activity Mean vs Training Set Activity Mean
journal, October 2008

  • Schüürmann, Gerrit; Ebert, Ralf-Uwe; Chen, Jingwen
  • Journal of Chemical Information and Modeling, Vol. 48, Issue 11
  • DOI: 10.1021/ci800253u

Atomic Property Weighted Radial Distribution Functions Descriptors of Metal–Organic Frameworks for the Prediction of Gas Uptake Capacity
journal, July 2013

  • Fernandez, Michael; Trefiak, Nicholas R.; Woo, Tom K.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 27
  • DOI: 10.1021/jp404287t

High-throughput screening: speeding up porous materials discovery
journal, January 2011

  • Wollmann, Philipp; Leistner, Matthias; Stoeck, Ulrich
  • Chemical Communications, Vol. 47, Issue 18
  • DOI: 10.1039/c1cc10674k