skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A heterodimeric glutathione S -transferase that stereospecifically breaks lignin's β( R )-aryl ether bond reveals the diversity of bacterial β-etherases

Abstract

Lignin is a heterogeneous polymer of aromatic subunits that is a major component of lignocellulosic plant biomass. Understanding how microorganisms deconstruct lignin is important for understanding the global carbon cycle, and could aid in developing systems for processing plant biomass into valuable commodities. Sphingomonad bacteria use stereospecific glutathione S-transferases (GSTs) called β-etherases to cleave the β-aryl ether (β-O-4) bond, the most common bond between aromatic subunits in lignin. Previously characterized bacterial β-etherases are homodimers that fall into two distinct GST subclasses: LigE homologues, which cleave the β(R) stereoisomer of the bond, and LigF homologues, which cleave the β(S) stereoisomer. Here, we report on a heterodimeric β-etherase (BaeAB) from the sphingomonad Novosphingobium aromaticivorans that stereospecifically cleaves the β(R)-aryl ether bond of the di-aromatic compound β-(2-methoxyphenoxy)-γ-hydroxypropiovanillone (MPHPV). BaeAB’s subunits are phylogenetically distinct from each other and from other β-etherases, though they are evolutionarily related to LigF, despite the fact that BaeAB and LigF cleave different β-aryl ether bond stereoisomers. We identify amino acid residues in BaeAB’s BaeA subunit important for substrate binding and catalysis, including an asparagine that is proposed to activate the glutathione cofactor. We also show that BaeAB homologues from other sphingomonads can cleave β(R)-MPHPV, and that they may bemore » as common in bacteria as LigE homologues. Our results imply that the ability to cleave the β-aryl ether bond arose independently at least twice in GSTs, and that BaeAB homologues may be important for cleaving the β(R)-aryl ether bonds of lignin-derived oligomers in nature.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [2];  [2]; ORCiD logo [2];  [1];  [3]; ORCiD logo [4]
  1. Univ. of Wisconsin, Madison, WI (United States). Wisconsin Energy Inst.; Univ. of Wisconsin, Madison, WI (United States). Dept. of Energy Great Lakes Bioenergy Research Center
  2. Univ. of Wisconsin, Madison, WI (United States). Wisconsin Energy Inst.; Univ. of Wisconsin, Madison, WI (United States). Dept. of Energy Great Lakes Bioenergy Research Center; Univ. of Wisconsin, Madison, WI (United States). Dept. of Biochemistry
  3. Univ. of Wisconsin, Madison, WI (United States). Wisconsin Energy Inst.; Univ. of Wisconsin, Madison, WI (United States). Dept. of Energy Great Lakes Bioenergy Research Center; Univ. of Wisconsin, Madison, WI (United States). Dept. of Civil and Environmental Engineering
  4. Univ. of Wisconsin, Madison, WI (United States). Wisconsin Energy Inst.; Univ. of Wisconsin, Madison, WI (United States). Dept. of Energy Great Lakes Bioenergy Research Center; Univ. of Wisconsin, Madison, WI (United States). Dept. of Bacteriology
Publication Date:
Research Org.:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1506668
Grant/Contract Number:  
SC0018409
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Biological Chemistry
Additional Journal Information:
Journal Volume: 294; Journal Issue: 6; Journal ID: ISSN 0021-9258
Publisher:
American Society for Biochemistry and Molecular Biology
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 59 BASIC BIOLOGICAL SCIENCES; Novosphingobium aromaticivorans; sphingomonads; β-etherase; β-aryl ether bond; glutathione S-transferase; lignin degradation; stereoselectivity; protein evolution; bacterial metabolism; enzyme mutation

Citation Formats

Kontur, Wayne S., Olmsted, Charles N., Yusko, Larissa M., Niles, Alyssa V., Walters, Kevin A., Beebe, Emily T., Vander Meulen, Kirk A., Karlen, Steven D., Gall, Daniel L., Noguera, Daniel R., and Donohue, Timothy J. A heterodimeric glutathione S -transferase that stereospecifically breaks lignin's β( R )-aryl ether bond reveals the diversity of bacterial β-etherases. United States: N. p., 2018. Web. doi:10.1074/jbc.RA118.006548.
Kontur, Wayne S., Olmsted, Charles N., Yusko, Larissa M., Niles, Alyssa V., Walters, Kevin A., Beebe, Emily T., Vander Meulen, Kirk A., Karlen, Steven D., Gall, Daniel L., Noguera, Daniel R., & Donohue, Timothy J. A heterodimeric glutathione S -transferase that stereospecifically breaks lignin's β( R )-aryl ether bond reveals the diversity of bacterial β-etherases. United States. doi:10.1074/jbc.RA118.006548.
Kontur, Wayne S., Olmsted, Charles N., Yusko, Larissa M., Niles, Alyssa V., Walters, Kevin A., Beebe, Emily T., Vander Meulen, Kirk A., Karlen, Steven D., Gall, Daniel L., Noguera, Daniel R., and Donohue, Timothy J. Wed . "A heterodimeric glutathione S -transferase that stereospecifically breaks lignin's β( R )-aryl ether bond reveals the diversity of bacterial β-etherases". United States. doi:10.1074/jbc.RA118.006548. https://www.osti.gov/servlets/purl/1506668.
@article{osti_1506668,
title = {A heterodimeric glutathione S -transferase that stereospecifically breaks lignin's β( R )-aryl ether bond reveals the diversity of bacterial β-etherases},
author = {Kontur, Wayne S. and Olmsted, Charles N. and Yusko, Larissa M. and Niles, Alyssa V. and Walters, Kevin A. and Beebe, Emily T. and Vander Meulen, Kirk A. and Karlen, Steven D. and Gall, Daniel L. and Noguera, Daniel R. and Donohue, Timothy J.},
abstractNote = {Lignin is a heterogeneous polymer of aromatic subunits that is a major component of lignocellulosic plant biomass. Understanding how microorganisms deconstruct lignin is important for understanding the global carbon cycle, and could aid in developing systems for processing plant biomass into valuable commodities. Sphingomonad bacteria use stereospecific glutathione S-transferases (GSTs) called β-etherases to cleave the β-aryl ether (β-O-4) bond, the most common bond between aromatic subunits in lignin. Previously characterized bacterial β-etherases are homodimers that fall into two distinct GST subclasses: LigE homologues, which cleave the β(R) stereoisomer of the bond, and LigF homologues, which cleave the β(S) stereoisomer. Here, we report on a heterodimeric β-etherase (BaeAB) from the sphingomonad Novosphingobium aromaticivorans that stereospecifically cleaves the β(R)-aryl ether bond of the di-aromatic compound β-(2-methoxyphenoxy)-γ-hydroxypropiovanillone (MPHPV). BaeAB’s subunits are phylogenetically distinct from each other and from other β-etherases, though they are evolutionarily related to LigF, despite the fact that BaeAB and LigF cleave different β-aryl ether bond stereoisomers. We identify amino acid residues in BaeAB’s BaeA subunit important for substrate binding and catalysis, including an asparagine that is proposed to activate the glutathione cofactor. We also show that BaeAB homologues from other sphingomonads can cleave β(R)-MPHPV, and that they may be as common in bacteria as LigE homologues. Our results imply that the ability to cleave the β-aryl ether bond arose independently at least twice in GSTs, and that BaeAB homologues may be important for cleaving the β(R)-aryl ether bonds of lignin-derived oligomers in nature.},
doi = {10.1074/jbc.RA118.006548},
journal = {Journal of Biological Chemistry},
issn = {0021-9258},
number = 6,
volume = 294,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Biological valorization strategies for converting lignin into fuels and chemicals
journal, June 2017


The SWISS-MODEL Repository—new features and functionality
journal, November 2016

  • Bienert, Stefan; Waterhouse, Andrew; de Beer, Tjaart A. P.
  • Nucleic Acids Research, Vol. 45, Issue D1
  • DOI: 10.1093/nar/gkw1132

A Group of Sequence-Related Sphingomonad Enzymes Catalyzes Cleavage of β-Aryl Ether Linkages in Lignin β-Guaiacyl and β-Syringyl Ether Dimers
journal, October 2014

  • Gall, Daniel L.; Ralph, John; Donohue, Timothy J.
  • Environmental Science & Technology, Vol. 48, Issue 20
  • DOI: 10.1021/es503886d

Cascade enzymatic cleavage of the β-O-4 linkage in a lignin model compound
journal, January 2016

  • Rosini, Elena; Allegretti, Chiara; Melis, Roberta
  • Catalysis Science & Technology, Vol. 6, Issue 7
  • DOI: 10.1039/C5CY01591J

Structure, Catalytic Mechanism, and Evolution of the Glutathione Transferases
journal, January 1997

  • Armstrong, Richard N.
  • Chemical Research in Toxicology, Vol. 10, Issue 1
  • DOI: 10.1021/tx960072x

Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-Aryl Ether Bonds in Lignin
journal, December 2015

  • Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.
  • Journal of Biological Chemistry, Vol. 291, Issue 10
  • DOI: 10.1074/jbc.M115.694307

Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily
journal, November 2001

  • Sheehan, David; Meade, Gerardene; Foley, Vivienne M.
  • Biochemical Journal, Vol. 360, Issue 1
  • DOI: 10.1042/bj3600001

Novosphingobium aromaticivorans uses a Nu-class glutathione S -transferase as a glutathione lyase in breaking the β-aryl ether bond of lignin
journal, February 2018

  • Kontur, Wayne S.; Bingman, Craig A.; Olmsted, Charles N.
  • Journal of Biological Chemistry, Vol. 293, Issue 14
  • DOI: 10.1074/jbc.RA117.001268

A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes
journal, July 2013

  • van der Wal, Annemieke; Geydan, Thomas D.; Kuyper, Thomas W.
  • FEMS Microbiology Reviews, Vol. 37, Issue 4
  • DOI: 10.1111/1574-6976.12001

Identification of Three Alcohol Dehydrogenase Genes Involved in the Stereospecific Catabolism of Arylglycerol- -Aryl Ether by Sphingobium sp. Strain SYK-6
journal, June 2009

  • Sato, Y.; Moriuchi, H.; Hishiyama, S.
  • Applied and Environmental Microbiology, Vol. 75, Issue 16
  • DOI: 10.1128/AEM.00880-09

Large-Scale Determination of Sequence, Structure, and Function Relationships in Cytosolic Glutathione Transferases across the Biosphere
journal, April 2014


Lignin chemistry?past, present and future
journal, January 1977


Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading
journal, January 2018

  • Schutyser, W.; Renders, T.; Van den Bosch, S.
  • Chemical Society Reviews, Vol. 47, Issue 3
  • DOI: 10.1039/C7CS00566K

From Gene Towards Selective Biomass Valorization: Bacterial β-Etherases with Catalytic Activity on Lignin-Like Polymers
journal, September 2014

  • Picart, Pere; Müller, Christoph; Mottweiler, Jakob
  • ChemSusChem, Vol. 7, Issue 11
  • DOI: 10.1002/cssc.201402465

The Kinetics of the Synthesis of Photopigments in Rhodopseudomonas spheroides
journal, September 1962


Selective Cleavage of Lignin β- O -4 Aryl Ether Bond by β-Etherase of the White-Rot Fungus Dichomitus squalens
journal, January 2018

  • Marinović, Mila; Nousiainen, Paula; Dilokpimol, Adiphol
  • ACS Sustainable Chemistry & Engineering, Vol. 6, Issue 3
  • DOI: 10.1021/acssuschemeng.7b03619

Genetic and Biochemical Investigations on Bacterial Catabolic Pathways for Lignin-Derived Aromatic Compounds
journal, January 2007

  • Masai, Eiji; Katayama, Yoshihiro; Fukuda, Masao
  • Bioscience, Biotechnology, and Biochemistry, Vol. 71, Issue 1
  • DOI: 10.1271/bbb.60437

Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids
journal, January 2004


Function of Shaker potassium channels produced by cell-free translation upon injection into Xenopus oocytes
journal, January 2013

  • Jarecki, Brian W.; Makino, Shin-ichi; Beebe, Emily T.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01040

Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees
journal, April 2016

  • Letunic, Ivica; Bork, Peer
  • Nucleic Acids Research, Vol. 44, Issue W1
  • DOI: 10.1093/nar/gkw290

RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies
journal, January 2014


The fungal glutathione S-transferase system. Evidence of new classes in the wood-degrading basidiomycete Phanerochaete chrysosporium
journal, August 2009

  • Morel, Mélanie; Ngadin, Andrew A.; Droux, Michel
  • Cellular and Molecular Life Sciences, Vol. 66, Issue 23
  • DOI: 10.1007/s00018-009-0104-5

Monomer−Dimer Equilibrium in Glutathione Transferases: A Critical Re-Examination
journal, November 2009

  • Fabrini, Raffaele; De Luca, Anastasia; Stella, Lorenzo
  • Biochemistry, Vol. 48, Issue 43
  • DOI: 10.1021/bi901238t

Complete Genome Sequence of Sphingobium sp. Strain YG1, a Lignin Model Dimer-Metabolizing Bacterium Isolated from Sediment in Kagoshima Bay, Japan
journal, April 2018


Exploring glutathione lyases as biocatalysts: paving the way for enzymatic lignin depolymerization and future stereoselective applications
journal, January 2015

  • Picart, Pere; Sevenich, Marc; Domínguez de María, Pablo
  • Green Chem., Vol. 17, Issue 11
  • DOI: 10.1039/C5GC01078K

ExPASy: SIB bioinformatics resource portal
journal, May 2012

  • Artimo, P.; Jonnalagedda, M.; Arnold, K.
  • Nucleic Acids Research, Vol. 40, Issue W1
  • DOI: 10.1093/nar/gks400

Glutathione transferases in bacteria: Bacterial GSTs
journal, November 2008


Protein production by auto-induction in high-density shaking cultures
journal, May 2005


Atypical features of a Ure2p glutathione transferase from Phanerochaete chrysosporium
journal, May 2013


Characterization of the Third Glutathione S -Transferase Gene Involved in Enantioselective Cleavage of the β-Aryl Ether by Sphingobium sp. Strain SYK-6
journal, December 2011

  • Tanamura, Kazuyuki; Abe, Tomokuni; Kamimura, Naofumi
  • Bioscience, Biotechnology, and Biochemistry, Vol. 75, Issue 12
  • DOI: 10.1271/bbb.110525

Microbial β-etherases and glutathione lyases for lignin valorisation in biorefineries: current state and future perspectives
journal, May 2018

  • Husarcíková, Jana; Voß, Hauke; Domínguez de María, Pablo
  • Applied Microbiology and Biotechnology, Vol. 102, Issue 13
  • DOI: 10.1007/s00253-018-9040-3

Liquid fuels, hydrogen and chemicals from lignin A critical review
journal, May 2013

  • Azadi, Pooya; Inderwildi, Oliver R.; Farnood, Ramin
  • Renewable and Sustainable Energy Reviews, Vol. 21, p. 506-523
  • DOI: 10.1016/j.rser.2012.12.022

Enzymatic Specific Production and Chemical Functionalization of Phenylpropanone Platform Monomers from Lignin
journal, December 2016


Enzymatic cleavage of lignin β-O-4 aryl ether bonds via net internal hydrogen transfer
journal, January 2013

  • Reiter, Jochen; Strittmatter, Harald; Wiemann, Lars O.
  • Green Chemistry, Vol. 15, Issue 5
  • DOI: 10.1039/c3gc40295a

A superior host strain for the over-expression of cloned genes using the T7 promoter based vectors
journal, January 1995

  • Doherty, Aidan J.; Ashford, Stephen R.; Brannigan, James A.
  • Nucleic Acids Research, Vol. 23, Issue 11
  • DOI: 10.1093/nar/23.11.2074

Characterization of a Phanerochaete chrysosporium Glutathione Transferase Reveals a Novel Structural and Functional Class with Ligandin Properties
journal, September 2012

  • Mathieu, Yann; Prosper, Pascalita; Buée, Marc
  • Journal of Biological Chemistry, Vol. 287, Issue 46
  • DOI: 10.1074/jbc.M112.402776

Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change
journal, April 2017

  • Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr
  • Microbiology and Molecular Biology Reviews, Vol. 81, Issue 2
  • DOI: 10.1128/MMBR.00063-16

Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism: Bacterial catabolism of lignin-derived aromatics
journal, November 2017

  • Kamimura, Naofumi; Takahashi, Kenji; Mori, Kosuke
  • Environmental Microbiology Reports, Vol. 9, Issue 6
  • DOI: 10.1111/1758-2229.12597

Combination of six enzymes of a marine Novosphingobium converts the stereoisomers of β-O-4 lignin model dimers into the respective monomers
journal, October 2015

  • Ohta, Yukari; Nishi, Shinro; Hasegawa, Ryoichi
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep15105

The EMBL-EBI bioinformatics web and programmatic tools framework
journal, April 2015

  • Li, Weizhong; Cowley, Andrew; Uludag, Mahmut
  • Nucleic Acids Research, Vol. 43, Issue W1
  • DOI: 10.1093/nar/gkv279

Three Distinct-Type Glutathione S-Transferases from Escherichia coli Important for Defense against Oxidative Stress
journal, November 2006

  • Kanai, Takuya; Takahashi, Kenji; Inoue, Hideshi
  • The Journal of Biochemistry, Vol. 140, Issue 5
  • DOI: 10.1093/jb/mvj199

Multi-step biocatalytic depolymerization of lignin
journal, June 2017

  • Picart, Pere; Liu, Haifeng; Grande, Philipp M.
  • Applied Microbiology and Biotechnology, Vol. 101, Issue 15
  • DOI: 10.1007/s00253-017-8360-z

Roles of the Enantioselective Glutathione S-Transferases in Cleavage of  -Aryl Ether
journal, March 2003


Sequestration of atmospheric CO2 in global carbon pools
journal, January 2008