skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices

Abstract

An integrated cell for the solar-driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar-to-hydrogen (STH) conversion efficiency of such a system depends on the performance and materials properties of the individual components as well as on the component integration, overall device architecture, and system operating conditions. This Review focuses on the modeling- and simulation-guided development and implementation of solar-driven water-splitting prototypes from a holistic viewpoint that explores the various interplays between the components. The underlying physics and interactions at the cell level is are reviewed and discussed, followed by an overview of the use of the cell model to provide target properties of materials and guide the design of a range of traditional and unique device architectures.

Authors:
 [1]; ORCiD logo [2];  [3];  [4];  [1];  [5];  [6];  [7];  [1];  [1];  [8];  [9];  [8];  [2];  [2];  [8];  [2]
  1. California Inst. of Technology, Pasadena CA (United States). Joint Center for Artificial Photosynthesis
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis
  3. Univ. of California, Irvine, CA (United States). Dept. of Chemistry, and Dept. of Chemical Engineering and Materials Science
  4. Air Products and Chemicals, Inc., Allentown, PA (United States)
  5. Univ. of Arkansas, Fayetteville, AR (United States). Dept. of Chemistry and Biochemistry
  6. Northrop Grumman Aerospace Systems, Redondo Beach, CA (United States). Nanophotonics and Plasmonics Lab.
  7. Ecole Polytechnique Federale Lausanne (EPFL), Lausanne (Switzlerland). Lab. of Renewable Energy Science and Engineering
  8. California Inst. of Technology, Pasadena CA (United States). Joint Center for Artificial Photosynthesis, Division of Chemistry and Chemical Engineering
  9. Ecole Polytechnique Federale Lausanne (EPFL), Lausanne (Switzlerland). School of Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1506250
Alternate Identifier(s):
OSTI ID: 1401230
Grant/Contract Number:  
AC02-05CH11231; SC0004993; EE0006963
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Volume: 55; Journal Issue: 42; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
device architecture; hydrogen; modeling; photoelectrochemistry; solar-driven water splitting

Citation Formats

Xiang, Chengxiang, Weber, Adam Z., Ardo, Shane, Berger, Alan, Chen, YiKai, Coridan, Robert, Fountaine, Katherine T., Haussener, Sophia, Hu, Shu, Liu, Rui, Lewis, Nathan S., Modestino, Miguel A., Shaner, Matthew M., Singh, Meenesh R., Stevens, John C., Sun, Ke, and Walczak, Karl. Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices. United States: N. p., 2016. Web. doi:10.1002/anie.201510463.
Xiang, Chengxiang, Weber, Adam Z., Ardo, Shane, Berger, Alan, Chen, YiKai, Coridan, Robert, Fountaine, Katherine T., Haussener, Sophia, Hu, Shu, Liu, Rui, Lewis, Nathan S., Modestino, Miguel A., Shaner, Matthew M., Singh, Meenesh R., Stevens, John C., Sun, Ke, & Walczak, Karl. Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices. United States. doi:10.1002/anie.201510463.
Xiang, Chengxiang, Weber, Adam Z., Ardo, Shane, Berger, Alan, Chen, YiKai, Coridan, Robert, Fountaine, Katherine T., Haussener, Sophia, Hu, Shu, Liu, Rui, Lewis, Nathan S., Modestino, Miguel A., Shaner, Matthew M., Singh, Meenesh R., Stevens, John C., Sun, Ke, and Walczak, Karl. Thu . "Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices". United States. doi:10.1002/anie.201510463. https://www.osti.gov/servlets/purl/1506250.
@article{osti_1506250,
title = {Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices},
author = {Xiang, Chengxiang and Weber, Adam Z. and Ardo, Shane and Berger, Alan and Chen, YiKai and Coridan, Robert and Fountaine, Katherine T. and Haussener, Sophia and Hu, Shu and Liu, Rui and Lewis, Nathan S. and Modestino, Miguel A. and Shaner, Matthew M. and Singh, Meenesh R. and Stevens, John C. and Sun, Ke and Walczak, Karl},
abstractNote = {An integrated cell for the solar-driven splitting of water consists of multiple functional components and couples various photoelectrochemical (PEC) processes at different length and time scales. The overall solar-to-hydrogen (STH) conversion efficiency of such a system depends on the performance and materials properties of the individual components as well as on the component integration, overall device architecture, and system operating conditions. This Review focuses on the modeling- and simulation-guided development and implementation of solar-driven water-splitting prototypes from a holistic viewpoint that explores the various interplays between the components. The underlying physics and interactions at the cell level is are reviewed and discussed, followed by an overview of the use of the cell model to provide target properties of materials and guide the design of a range of traditional and unique device architectures.},
doi = {10.1002/anie.201510463},
journal = {Angewandte Chemie (International Edition)},
issn = {1433-7851},
number = 42,
volume = 55,
place = {United States},
year = {2016},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Stable Elastomeric Anion Exchange Membranes Based on Quaternary Ammonium-Tethered Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene Triblock Copolymers
journal, September 2015


Limiting and realizable efficiencies of solar photolysis of water
journal, August 1985

  • Bolton, James R.; Strickler, Stewart J.; Connolly, John S.
  • Nature, Vol. 316, Issue 6028, p. 495-500
  • DOI: 10.1038/316495a0

Morphology of Hydrated As-Cast Nafion Revealed through Cryo Electron Tomography
journal, December 2014

  • Allen, Frances I.; Comolli, Luis R.; Kusoglu, Ahmet
  • ACS Macro Letters, Vol. 4, Issue 1, p. 1-5
  • DOI: 10.1021/mz500606h

Ionic Conduction in Nanostructured Membranes Based on Polymerized Protic Ionic Liquids
journal, February 2013

  • Schneider, Yanika; Modestino, Miguel A.; McCulloch, Bryan L.
  • Macromolecules, Vol. 46, Issue 4, p. 1543-1548
  • DOI: 10.1021/ma3024624

Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays
journal, January 2011

  • Spurgeon, Joshua M.; Walter, Michael G.; Zhou, Junfeng
  • Energy & Environmental Science, Vol. 4, Issue 5, p. 1772-1780
  • DOI: 10.1039/c1ee01028j

High Anion Conductivity and Low Water Uptake of Phosphonium Containing Diblock Copolymer Membranes
journal, October 2014

  • Cotanda, Pepa; Sudre, Guillaume; Modestino, Miguel A.
  • Macromolecules, Vol. 47, Issue 21, p. 7540-7547
  • DOI: 10.1021/ma501744w

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates
journal, July 2009

  • Fan, Zhiyong; Razavi, Haleh; Do, Jae-won
  • Nature Materials, Vol. 8, Issue 8, p. 648-653
  • DOI: 10.1038/nmat2493

Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications
journal, February 2010

  • Kelzenberg, Michael D.; Boettcher, Shannon W.; Petykiewicz, Jan A.
  • Nature Materials, Vol. 9, Issue 3, p. 239-244
  • DOI: 10.1038/nmat2635

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Self-Assembly and Transport Limitations in Confined Nafion Films
journal, January 2013

  • Modestino, Miguel A.; Paul, Devproshad K.; Dishari, Shudipto
  • Macromolecules, Vol. 46, Issue 3, p. 867-873
  • DOI: 10.1021/ma301999a

Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells
journal, June 2005

  • Kayes, Brendan M.; Atwater, Harry A.; Lewis, Nathan S.
  • Journal of Applied Physics, Vol. 97, Issue 11, Article No. 114302
  • DOI: 10.1063/1.1901835

Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement
journal, May 2011

  • Blankenship, R. E.; Tiede, D. M.; Barber, J.
  • Science, Vol. 332, Issue 6031, p. 805-809
  • DOI: 10.1126/science.1200165

Controlling Nafion Structure and Properties via Wetting Interactions
journal, May 2012

  • Modestino, Miguel A.; Kusoglu, Ahmet; Hexemer, Alexander
  • Macromolecules, Vol. 45, Issue 11, p. 4681-4688
  • DOI: 10.1021/ma300212f

Surface-Induced Micelle Orientation in Nafion Films
journal, April 2011

  • Bass, Maria; Berman, Amir; Singh, Amarjeet
  • Macromolecules, Vol. 44, Issue 8, p. 2893-2899
  • DOI: 10.1021/ma102361f

Plasmonics for improved photovoltaic devices
journal, February 2010

  • Atwater, Harry A.; Polman, Albert
  • Nature Materials, Vol. 9, Issue 3, p. 205-213
  • DOI: 10.1038/nmat2629

Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting
journal, September 2006


Photocatalytic Water Splitting: Recent Progress and Future Challenges
journal, September 2010

  • Maeda, Kazuhiko; Domen, Kazunari
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 18, p. 2655-2661
  • DOI: 10.1021/jz1007966

Effect of Confinement on Structure, Water Solubility, and Water Transport in Nafion Thin Films
journal, September 2012

  • Eastman, Scott A.; Kim, Sangcheol; Page, Kirt A.
  • Macromolecules, Vol. 45, Issue 19, p. 7920-7930
  • DOI: 10.1021/ma301289v

Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays
journal, January 2011

  • Boettcher, Shannon W.; Warren, Emily L.; Putnam, Morgan C.
  • Journal of the American Chemical Society, Vol. 133, Issue 5, p. 1216-1219
  • DOI: 10.1021/ja108801m

A comprehensive review on PEM water electrolysis
journal, April 2013

  • Carmo, Marcelo; Fritz, David L.; Mergel, J�rgen
  • International Journal of Hydrogen Energy, Vol. 38, Issue 12, p. 4901-4934
  • DOI: 10.1016/j.ijhydene.2013.01.151