skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Isostructural metal-insulator transition in VO 2

Abstract

The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.

Authors:
ORCiD logo; ORCiD logo; ORCiD logo; ORCiD logo; ; ORCiD logo; ; ORCiD logo; ORCiD logo; ; ; ; ORCiD logo; ORCiD logo; ; ORCiD logo; ; ; ORCiD logo; ORCiD logo more »; ORCiD logo « less
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Office of Science - Office of Basic Energy Sciences - Materials Sciences and Engineering Division; US Department of the Navy, Office of Naval Research (ONR); National Science Foundation (NSF)
OSTI Identifier:
1505612
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article
Journal Name:
Science
Additional Journal Information:
Journal Volume: 362; Journal Issue: 6418; Journal ID: ISSN 0036-8075
Publisher:
AAAS
Country of Publication:
United States
Language:
English

Citation Formats

Lee, D., Chung, B., Shi, Y., Kim, G. -Y., Campbell, N., Xue, F., Song, K., Choi, S. -Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J. -W., Paudel, T. R., Kang, J. -H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., and Eom, C. B. Isostructural metal-insulator transition in VO 2. United States: N. p., 2018. Web. doi:10.1126/science.aam9189.
Lee, D., Chung, B., Shi, Y., Kim, G. -Y., Campbell, N., Xue, F., Song, K., Choi, S. -Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J. -W., Paudel, T. R., Kang, J. -H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., & Eom, C. B. Isostructural metal-insulator transition in VO 2. United States. doi:10.1126/science.aam9189.
Lee, D., Chung, B., Shi, Y., Kim, G. -Y., Campbell, N., Xue, F., Song, K., Choi, S. -Y., Podkaminer, J. P., Kim, T. H., Ryan, P. J., Kim, J. -W., Paudel, T. R., Kang, J. -H., Spinuzzi, J. W., Tenne, D. A., Tsymbal, E. Y., Rzchowski, M. S., Chen, L. Q., Lee, J., and Eom, C. B. Thu . "Isostructural metal-insulator transition in VO 2". United States. doi:10.1126/science.aam9189.
@article{osti_1505612,
title = {Isostructural metal-insulator transition in VO 2},
author = {Lee, D. and Chung, B. and Shi, Y. and Kim, G. -Y. and Campbell, N. and Xue, F. and Song, K. and Choi, S. -Y. and Podkaminer, J. P. and Kim, T. H. and Ryan, P. J. and Kim, J. -W. and Paudel, T. R. and Kang, J. -H. and Spinuzzi, J. W. and Tenne, D. A. and Tsymbal, E. Y. and Rzchowski, M. S. and Chen, L. Q. and Lee, J. and Eom, C. B.},
abstractNote = {The metal-insulator transition in correlated materials is usually coupled to a symmetry-lowering structural phase transition. This coupling not only complicates the understanding of the basic mechanism of this phenomenon but also limits the speed and endurance of prospective electronic devices. We demonstrate an isostructural, purely electronically driven metal-insulator transition in epitaxial heterostructures of an archetypal correlated material, vanadium dioxide. A combination of thin-film synthesis, structural and electrical characterizations, and theoretical modeling reveals that an interface interaction suppresses the electronic correlations without changing the crystal structure in this otherwise correlated insulator. This interaction stabilizes a nonequilibrium metallic phase and leads to an isostructural metal-insulator transition. This discovery will provide insights into phase transitions of correlated materials and may aid the design of device functionalities.},
doi = {10.1126/science.aam9189},
journal = {Science},
issn = {0036-8075},
number = 6418,
volume = 362,
place = {United States},
year = {2018},
month = {11}
}